Publikationen
Conference contributions | 2013
Economic Comparison of Torrefaction-Based and Conventional Pellet Production-to-End-Use Chains
Ehrig R, et al. Economic Comparison of Torrefaction-Based and Conventional Pellet Production-to-End-Use Chains, 21st European Biomass Conference and Exhibition 2013, 3rd-7th of June 2013, Copenhagen, Denmark. p 1342-1349.
Biomass upgrading through torrefaction is expected to relevantly reduce biomass trade costs and thus energy costs for the end-user. In this framework, the present work aims at defining crucial technical and cost parameters for the production, fuel properties, supply and end-use of torrefied pellets. The findings are used to compare four real-case wood pellet with corresponding torrefied pellet supply chains. Input data are derived from laboratory fuel, pelletising and storage experiments with torrefied biomass provided from European producers, cost estimations based on experience from related technology engineering and set-up as well as from expert consultations. This allows a step-by-step comparison of cost advantages and additional expenses from pretreatment to end-user. As a result, torrefied pellets turn out to be a certain alternative for wood pellets. The cost comparison demonstrates that the production of torrefied pellets is still much more cost-intensive, but can be partly compensated by reduced transportation costs. At the end-user, heat production in small-scale pellet boilers is technically feasible, but with slightly higher costs. Co-firing torrefied pellets in large-scale coal plants can be cost-competitive to industrial wood pellets, when no additional retrofit and operation and maintenance costs incur.
Peer-reviewed publications | 2014
Economics and price risks in international pellet supply chains
Ehrig R, Behrendt F, Wörgetter M, Strasser C. Economics and price risks in international pellet supply chains. International Pellet Supply Chains. ISBN 978-3-319-07015-5. 2014.
Peer Reviewed Scientific Journals | 2017
Effect of draught conditions and ignition technique on combustion performance of firewood roomheaters
Reichert G, Hartmann H, Haslinger W, Öhler H, Mack R, Schmidl C, Schön C, Schwabl M, Stressler H, Sturmlechner R, Hochenauer C. Effect of draught conditions and ignition technique on combustion performance of firewood roomheaters. Renewable Energy. 1 May 2017;105: 547-560.
Firewood roomheaters are popular, widespread and important for reaching European CO2 emission targets. Since they contribute significantly to local air pollution, they have to be optimized towards minimal emission release, especially in real-life operation. Draught conditions and user behavior, particularly the ignition technique, significantly affect the emission and efficiency performance of firewood roomheaters. This study assessed the effects of the respective parameters experimentally. The results revealed a clear correlation between draught conditions and thermal efficiency. Increased draught conditions up to 48 Pa significantly decreased thermal efficiency by 6%–11% absolutely. However, for gaseous emissions no clear trend was observed. Accordingly, CO and OGC emissions increased at higher draught conditions for one tested roomheater by 30% and 60%, but decreased for two other tested roomheaters by 13%–45%. For PM emissions no effect of increased draught conditions was evident. Top-down ignition technique did not lead to a significant decrease of PM emissions compared to bottom-up ignition. In contrast, bottom-up ignition led to best thermal efficiencies. The use of either spruce or beech as kindling material revealed no significant relevance for the ignition performance.
Peer Reviewed Scientific Journals | 2019
Effects of partial maize silage substitution with microalgae on viscosity and biogas yields in continuous AD trials
Gruber-Brunhumer MR, Montgomery LFR, Nussbaumer M, Schoepp T, Zohar E, Muccio M, Ludwig I, Bochmann G, Fuchs W, Drosg B. Effects of partial maize silage substitution with microalgae on viscosity and biogas yields in continuous AD trials. Journal of Biotechnology 2019;295:80-89.
The microalga Acutodesmus obliquus was investigated as a feedstock in semi-continuously fed anaerobic digestion trials, where A. obliquus was co-digested with pig slurry and maize silage. Maize silage was substituted by both 10% and 20% untreated, and 20% ultrasonicated microalgae biomass on a VS (volatile solids) basis. The substitution of maize silage with 20% of either ultrasonicated and untreated microalgae led to significantly lower biogas yields, i.e., 560 dm³ kg−1 VScorr in the reference compared to 516 and 509 dm³ kg-1VScorr for untreated and ultrasonicated microalgae substitution. Further, the viscosities in the different reactors were measured at an OLR of 3.5 g VS dm-3 d-1. However, all treatments with microalgae resulted in significantly lower viscosities. While the mean viscosity reached 0.503 Pa s in the reference reactor, mean viscosities were 53% lower in reactors where maize was substituted by 20% microalgae, i.e. 0.239 Pa s, at a constant rotation speed of 30 rpm. Reactors where maize was substituted by 20% ultrasonicated microalgae had a 32% lower viscosity, for 10% microalgae substitution a decrease of 8% was measured. Decreased viscosities have beneficial effect on the bioprocess and the economy in biogas plants. Nonetheless, with regard to other parameters, no positive effect on biogas yields by partial substitution with microalgae biomass was found. The application of microalgae may be an interesting option in anaerobic digestion when fibrous or lignocellulosic substances lead to high viscosities of the digested slurries. High production costs remain the bottleneck for making microalgae an interesting feedstock.
Other Presentations | 2015
Effects of pretreatment and storage methods on biomethane potential of different microalgae in anaerobic digestion
Gruber M, Jerney J, Zohar E, Nussbaumer M, Hieger C, Bochmann G, Schagerl M, Obbard JP, Fuchs W, Drosg B. Effects of pretreatment and storage methods on biomethane potential of different microalgae in anaerobic digestion, 23rd European Biomass Conference 2015, 1st-4th of June 2015, Vienna, Austria. (oral presentation)
Peer Reviewed Scientific Journals | 2020
Effects of Pyrolysis Conditions and Feedstocks on the Properties and Gasification Reactivity of Charcoal from Woodchips
Phounglamcheik A, Wang L, Romar H, Kienzl N, Broström M, Ramser K, Skreiberg Ø, Umeki K. Effects of Pyrolysis Conditions and Feedstocks on the Properties and Gasification Reactivity of Charcoal from Woodchips. Energy and Fuels. 2020;34(7):8353-8365.
Pyrolysis conditions in charcoal production affect yields, properties, and further use of charcoal. Reactivity is a critical property when using charcoal as an alternative to fossil coal and coke, as fuel or reductant, in different industrial processes. This work aimed to obtain a holistic understanding of the effects of pyrolysis conditions on the reactivity of charcoal. Notably, this study focuses on the complex effects that appear when producing charcoal from large biomass particles in comparison with the literature on pulverized biomass. Charcoals were produced from woodchips under a variety of pyrolysis conditions (heating rate, temperature, reaction gas, type of biomass, and bio-oil embedding). Gasification reactivity of produced charcoal was determined through thermogravimetric analysis under isothermal conditions of 850 °C and 20% of CO2. The charcoals were characterized for the elemental composition, specific surface area, pore volume and distribution, and carbon structure. The analysis results were used to elucidate the relationship between the pyrolysis conditions and the reactivity. Heating rate and temperature were the most influential pyrolysis parameters affecting charcoal reactivity, followed by the reaction gas and bio-oil embedding. The effects of these pyrolysis conditions on charcoal reactivity could primarily be explained by the difference in the meso- and macropore volume and the size and structural order of aromatic clusters. The lower reactivity of slow pyrolysis charcoals also coincided with their lower catalytic inorganic content. The reactivity difference between spruce and birch charcoals appears to be mainly caused by the difference in catalytically active inorganic elements. Contrary to pyrolysis of pulverized biomass, a low heating rate produced a higher specific surface area compared with a high heating rate. Furthermore, the porous structure and the reactivity of charcoal produced from woodchips were influenced when the secondary char formation was promoted, which cannot be observed in pyrolysis of pulverized biomass.
Peer Reviewed Scientific Journals | 2012
Effects of pyrolysis conditions on the heating rate in biomass particles and applicability of TGA kinetic parameters in particle thermal conversion modelling.
Mehrabian R, Scharler R, Obernberger I. Effects of pyrolysis conditions on the heating rate in biomass particles and applicability of TGA kinetic parameters in particle thermal conversion modelling. Fuel. 2012;93:567-75.
A one-dimensional single particle model is utilised to investigate the effects of radiation temperature, moisture content, particle size and biomass physical properties on the heating rate in biomass particles during pyrolysis. The model divides the particle into four layers - drying, pyrolysis, char and ash layer - corresponding to the four main stages of biomass thermal conversion. The average of the time derivative of the pyrolysis layer centre temperature weighted by the pyrolysis rate is introduced as an appropriate indicator for the heating rate in the particle during pyrolysis. The influencing parameters on the heating rate are summarised in the Biot number and the thermal time constant, to make the investigation of their effects easier. The heating rate is inversely proportional to the thermal time constant. The effect of a variation of the Biot number on the heating rate is negligible in comparison to the thermal time constant. Therefore, the thermal time constant can be sufficiently used to specify the heating rate regimes during pyrolysis. It is found that for thermal time constants of more than 50 s, pyrolysis takes place in a low heating rate regime, i.e. less than 50 K/min. Additionally, the heating rate during pyrolysis of various biomass types under a wide range of thermal conversion conditions has been examined, in order to classify the heating rate regime of pyrolysis in state-of-the-are combustion/gasification plants. The pyrolysis of wood dust and wood pellets is found to happen always in high heating rate regimes. Therefore, the kinetic parameters obtained by conventional TGA systems (typically with heating rates lower than 50 K/min) are not applicable for them. On the contrary, the pyrolysis of wood logs always happens in low heating rate regimes, which indicates that kinetic parameters obtained by conventional TGA systems can be applied. However, pyrolysis of wood chips can undergo low or high heating rate regimes depending on their particle size. Concerning the moisture content, it can be stated that it does not strongly influence the heating rate regime of certain biomass particles. © 2011 Elsevier Ltd. All rights reserved.
Peer Reviewed Scientific Journals | 2015
Efficiency and operational behaviour of small-scale pellet boilers installed in residential buildings
Carlon E, Schwarz M, Golicza L, Verma VK, Prada A, Baratieri M, et al. Efficiency and operational behaviour of small-scale pellet boilers installed in residential buildings. Appl Energy 2015;155:854-865.
Conference contributions | 2014
Efficiency criteria for pellet heating systems
Schmidl C. Efficiency criteria for pellet heating systems, European Pellet Conference 2014, 26th-28th of February 2014, Wels, Austria.
Peer Reviewed Scientific Journals | 2014
Efficient anaerobic mono-digestion of N-rich slaughterhouse waste: Influence of ammonia, temperature and trace elements
Ortner M, Leitzinger K, Skupien S, Bochmann G, Fuchs W. Efficient anaerobic mono-digestion of N-rich slaughterhouse waste: Influence of ammonia, temperature and trace elements. Bioresour Technol. 2014;174:222-32.
Three mono-digestion experiments treating slaughterhouse waste with high TKN concentration (~11. g/kg) were applied in lab-scale at mesophilic and psychrophilic conditions to study the impact of high ammonia concentrations and additives. Precipitation of sulphur by addition of ferrous chloride did not influence process behaviour, whereas supplementation of trace elements significantly improved process stability by reducing volatile fatty acid concentration towards zero.The limit of NH4-N concentration causing a rise of VFAs to 19,000mg/l and reduction of methane by 25% was found between 7.7 and 9.1g/kg which correspond to NH3 concentrations of 830-1060mg/l.Psychrophilic operation (25°C) lowered inhibitory NH3 concentration to 140mg/l, but process performance was stable only at low OLR of 0.4kgVS/m3d.Robust performance at highest possible NH4-N concentration (7.7g/kg), low VFA accumulation and satisfying methane yield of about 280Nm3/t COD was observed at OLR of 2.5kgVS/m3d at 37°C. © 2014 Elsevier Ltd.
Conference contributions | 2010
Efficient biomass utilisation by polygeneration processes - Production of hydrogen, electricity and heat
Mayer T. Efficient biomass utilisation by polygeneration processes - Production of hydrogen, electricity and heat, ICPS 2010, 7th-9th of September 2010, Leipzig, Germany.
A polygeneration process is about to be implemented at the biomass gasification plant in Oberwart, Austria. Apart from conventional heat and electricity production, product gas obtained from steam gasification of wood chips is used for production of hydrogen. A membrane separation process was chosen for this application. Meeting the requirements of robustness and simplicity are benefits of this technology, however, maximizing of purity and output of hydrogen is not given highest priority. Simulation results show the gas compositions of both permeate and retentate stream as a function of different membrane stage-cuts. Basically high hydrogen content in the permeate stream can be achieved, but only with the drawback of low stage-cuts. Moreover, the trade-off between hydrogen purity and hydrogen recovery as well as the influence of the operating pressure on the purity are illustrated.
Scientific Journals | 2019
Efficient Multi-Year Economic Energy Planning in Microgrids
Pecenak Z, Stadler M, Fahy K, Efficient Multi-Year Economic Energy Planning in Microgrids. Applied Energy 2019;225.
With energy systems, the problem of economic planning is decisive in the design of a low carbon and resilient future grid. Although several tools to solve the problem already exist in literature and industry, most tools only consider a single “typical year” while providing investment decisions that last around a quarter of a century. In this paper, we introduce why such an approach is limited and derive two approaches to correct this. The first approach, the Forward-Looking model, assumes perfect knowledge and makes investment decisions based on the full planning horizon. The second novel approach, the Adaptive method, solves the optimization problem in single year iterations, making incremental investment decisions that are dependant on previous years, with only knowledge of the current year. Comparing the two approaches on a realistic microgrid, we find little difference in investment decisions (maximum 21% difference in total cost over 20 years), but large differences in optimization time (up to 12000% time difference). We close the paper by discussing implications of forecasting errors on the microgrid planning process, concluding that the Adaptive approach is a suitable choice.
Conference contributions | 2009
Efficient utilisation of industrial residues and waste with high biomass content using gasification technology
Wilk V, Hofbauer H. Efficient utilisation of industrial residues and waste with high biomass content using gasification technology, 18th European Biomass Conference and Exhibiton 2010, 3th-7th of May 2010, Lyon, France. p 544-547.
Conference contributions | 2017
Effizienzsteigerung und Optimierung des Zusammenspiels von Scheitholzkessel, Pufferspeicher und Solaranlage durch die Verwendung mathematischer Modelle
Schulz J, Zemann C, Gölles M. Effizienzsteigerung und Optimierung des Zusammenspiels von Scheitholzkessel, Pufferspeicher und Solaranlage durch die Verwendung mathematischer Modelle. 5th Central European Biomass Conference (oral presentation). January 2017, Graz, Austria.
Contributions at other events | 2013
Einfluss der thermo-chemischen Vorbehandlung von Biertrebern auf die anaerobe Fermentation
Bochmann, G. Einfluss der thermo-chemischen Vorbehandlung von Biertrebern auf die anaerobe Fermentation, Ph.D. Thesis, Universität für Bodenkultur Wien, Vienna, Austria, 2013.
Gegenstand der Arbeit ist der thermische und thermo-chemische Aufschluss von Biertrebern. Dabei werden die Prozessbedingungen wie Chemikalien, Konzentration, Aufschlusstemperatur sowie Aufschlussdauer und deren Einfluss auf die Biogasgewinnung untersucht. Der Nachweis erfolgt entlang den einzelnen Prozessstufen Hydrolyse, Acidogenese und Methanogenese. Die Prozessparameter der Aufschlüsse haben sowohl einen starken Einfluss auf die Hydrolyse der Lignozellulose als auch auf die Bildung thermischer Nebenprodukte. Diese Zwischenprodukte beeinflussen unter anderem den Schritt der Acidogenese stark. Wohingegen die Endprodukte, Melanoidine, anaerob kaum abbaubar sind und damit die Biogasausbeute reduzieren. Die höchsten Methanerträge werden mit einer Behandlungstemperatur von 140 °C erreicht. Unterschiedlich sind dabei die Höhe der zusätzlichen Gaserträge von 28 Vol.-% mit H2O sowie rund 50 Vol.-% mit Lauge und 60 Vol.-% mit Säure. In semi-kontinuierlich beschickten Reaktoren konnten mit unbehandelten Trebern Erträge von 410 m³N CH4/Mg oTS realisiert werden. Thermisch aufgeschlossene Treber ergeben Erträge von 468 m³N CH4/Mg oTS (+14 %). Durch die Zugabe von Lauge zum thermischen Aufschluss kann der Methanertrag auf 558 m³N/Mg oTS (+36 %) gesteigert werden. Auf Grund der Prozessinstabilitäten war der acido-thermisch aufgeschlossene Treber nicht auswertbar. Der Mehrertrag in den Aufschlüssen ist auf die verbesserte Verwertung der Zellulose und Hemizellulose zurückzuführen. Durch die Vorbehandlung der Biertreber gelingt es, die Treberverwertung wirtschaftlicher zu gestalten. Nach der Vergütung im Österreichischen Ökostromgesetz 2012 können Erträge von bis 13 €/Mg FM Treber erreicht werden. Dies ist insbesondere durch eine thermo-chemischen Vorbehandlung möglich
Other Presentations | 2012
Einfluss von Holzart und Rohstoff auf die Entstehung von Emissionen von Holzpellets während der Lagerung
Schmutzer-Rosender, I. Einfluss von Holzart und Rohstoff auf die Entstehung von Emissionen von Holzpellets während der Lagerung, Master Thesis, Universität für Bodenkultur Wien, Vienna, Austria, 2012.
Als feste biogene Brennstoffe gewinnen Pellets durch ihre hohe Energiedichte, ihre gleichbleibende Qualität und die wachsende Nachfrage immer mehr an Bedeutung. Bei der Lagerung von Holzpellets werden Emissionen frei, welche aus Abbaureaktionen von Holzbestandteilen entstehen. Es gibt bereits einige Publikationen, welche das Auftreten und die Zusammensetzung dieser Emissionen in Pelletslagern beschreiben. Es fehlen jedoch noch jegliche Nachweise zur Klärung der ursächlichen Reaktionen, weshalb die Untersuchung der Emissionen aus Pellets und deren Rohstoffen erforderlich ist.
Im Zuge dieser Arbeit werden daher zunächst die Freisetzungsraten von Kohlenmonoxid (CO) und flüchtigen organischen Verbindungen (VOC) verschiedener Holzrohstoffe und Pellets in Lagerungsversuchen untersucht. Des Weiteren erfolgt die Bestimmung des organischen Extraktstoffgehaltes dieser Holzproben mittels Soxhletextraktion. Anschließend werden diese Charakteristika einander gegenübergestellt, um mögliche Zusammenhänge zu identifizieren. Bei den untersuchten Holzarten handelt es sich um die Gemeine Fichte (Picea abies), die Europäische Lärche (Larix decidua) sowie um die Weihrauchkiefer (Pinus taeda). Von diesen drei Holzarten werden verschiedene Späne und Pellets miteinander verglichen. Zudem werden unterschiedliche am österreichischen Markt erhältliche Pellets untersucht. Die höchste Freisetzung von CO wird bei frischen Kieferpellets mit 2,88 mg CO/kg Brennstoff (BS) absolute Trockenmasse (atro)/d gemessen. Die geringste Menge an CO wird von einer handelsüblichen Pelletsprobe mit 0,02 mg CO/kg BS atro/d emittiert. Allen untersuchten Holzproben ist gemein, dass in den Lagerungsversuchen höhere Mengen an CO als an VOC freigesetzt werden. Der organische Extraktstoffgehalt der Kieferproben ist am höchsten. Der geringste organische Extraktstoffgehalt tritt bei den Fichtenhobelspänen auf. Bei allen Proben wird festgestellt, dass der organische Extraktstoffgehalt mit der Pelletierung abnimmt. Zudem wird bestimmt, dass sich mit zunehmender Trocknungstemperatur der organische Extraktstoffgehalt verringert. Ein eindeutiger Zusammenhang zwischen Extraktstoffgehalt und freigesetzten Emissionsmengen kann nicht hergestellt werden.
Conference contributions | 2009
Einsatz der sensorgestützten Sortiertechnik zur Senkung des Brennwerts der Deponiefraktion in MBA Anlagen
Faist V, Ragossnig A. Einsatz der sensorgestützten Sortiertechnik zur Senkung des Brennwerts der Deponiefraktion in MBA Anlagen, Waste-to-Ressources 2009, 5th-8th of May 2009, Hannover, Deutschland.
Peer Reviewed Scientific Journals | 2018
Emission characterisation of modern wood stoves under real-life oriented operating conditions
Klauser F, Carlon E, Kistler M, Schmidl C, Schwabl M, Sturmlechner R, Haslinger W, Kasper-Giebl A. Emission characterisation of modern wood stoves under real-life oriented operating conditions. Atmospheric Environment 2018;192:257-266.
The quality of emission inventories substantially bases on the reliability of used emission factors (EFs). In this work EFs were studied according to recently published characterization methods, called “beReal”, reflecting real life operating conditions in Europe. EFs for four pellet stoves and nine firewood appliances (roomheaters and cookers) of carbon monoxide (CO), organic gaseous compounds (OGC), nitrogen oxides, total solid particles (TSP) of hot and of diluted flue gas, total, elemental and organic carbon (TC, EC, OC) and benzo(a)pyrene were determined.
CO, OGC, TSPs, TC, EC and OC emissions from firewood appliances were significantly higher than for pellet stoves, indicating the high relevance of classifying appliances according to the operation type. TSP sampled from diluted flue gas at 40 °C (28 mg MJ−1 to 271 mg MJ−1 based on fuel input) was higher than TSP sampled from hot flue gas (21 mg MJ−1 to 70 mg MJ−1). This reveals the high relevance of sampling conditions for the determination of real life emissions. Benzo(a)pyrene emissions scattered over a wide range (0.5 μg MJ−1 to 129.8 μg MJ−1) indicating high sensitivity to unfavorable combustion conditions. Therefore a higher number of experimentally determined emissions factors could improve the reliability of EFs for inventories. CO emissions measured in beReal tests were substantially higher than official type tests, thus showing that type testing results provide limited information for the determination of real life emissions.
A systematic evaluation of EFs with defined real life methods like beReal would substantially improve the reliability of emission inventories.
Reviewed Conference Papers | 2017
Emission factor assessment for two firewood stoves in the autumn or spring season
Sturmlechner R, Stressler H, Schwabl M, Reichert G, Carlon E, Haslinger W, Schmidl C, Weissinger A. Emission factor assessment for two firewood stoves in the autumn or spring season. 25th International Conference on Modelling, Monitoring and Management of Air Pollution. 25-27 April 2017.
This study analyses the emission factors of two firewood room heaters under testing conditions which emulate real life operation. A 6.5 kW stove with low heat storage capacity and high leakage rate (stove A) is compared with an 8 kW air-tight stove with high heat storage capacity (stove B). Thermal efficiency, carbon monoxide (CO) and organic gaseous compound (OGC) emissions, as well as the thermal heat losses (THL) during cool down phase were investigated in a series of laboratory tests. Furthermore, the influence of closing the air supply dampers at the end of the heating cycle was evaluated. Test results for the whole test cycle (including cool down phase) showed that stove A had CO emissions of 2633 mg/MJOutput and OGC emissions of 203 mg/MJOutput, while stove B had CO emissions of 2408 mg/MJOutput and OGC emissions of 109 mg/MJOutput, when air dampers were closed. It was also found that user behaviour has a critical influence on the stoves’ performance. Closing the air supply dampers at the end of the stove operation improved the efficiency by up to 5.0 percentage points. Furthermore, the duration of the cool down phase increased, as well as CO and OGC emissions decreased. As a matter of fact, measures to improve the user behaviour as for example user trainings and accurate manuals are of major importance in order to decrease emissions and increase efficiency of domestic heating appliances. Moreover, real life emission factors of other technologies should be established in order to develop a database which can be applied in air quality dispersion models.
Other publication | 2016
Emission Reduction of Firewood Roomheaters by Optimization of Operating Conditions and Catalyst Integration
Reichert G, Stressler H, Schmidl C, Schwabl M, Sturmlechner R, Haslinger W. Emission Reduction of Firewood Roomheaters by Optimization of Operating Conditions and Catalyst Integration. 24th European Biomass Conference & Exhibition (oral presentation). June 2016, Amsterdam, Netherlands.
Conference contributions | 2015
Emission Reduction of Firewood Stoves by Integrated Honeycomb Catalysts
Reichert G, Schmidl C, Schwabl M, Sedlmayer I, Stressler H, Sturmlechner R, Wöhler M, Haslinger W. Emission Reduction of Firewood Stoves by Integrated Honeycomb Catalysts, Word Sustainable Energy Days next 2015, 24th-27th of February 2015, Wels, Austria.
Conference contributions | 2014
Emissions from Biomass Boilers - The State of the Art
Schwabl M. Emissions from Biomass Boilers - The State of the Art, Wood Heating Conference, Newcastle 2015, 21st of November 2014, Newcastle, England.
Conference contributions | 2013
Emissions from Wood Pellets During Storage Referring to the Extractive Content
Schmutzer-Rosendeder I, Emhofer W, Haslinger W. Emissions from Wood Pellets During Storage Referring to the Extractive Content, Word Sustainable Energy Days next 2013, 27th-28th of February 2013, Wels, Austria.
Wood pellets and wood raw materials such as chips or sawdust emit hazardous gases such as carbon monoxide (CO) and volatile organic compounds (VOCs) during processing and storage. Due to the high toxicity of CO it is necessary to identify the release mechanisms for CO and VOCs. Several studies show that organic extractives decrease during storage as well as the emissions. Therefore, the purpose of this study was to investigate a possible correlation between the organic extractive content and the release of CO and VOCs. Sawdust and pellets from Norway spruce (Picea abies), European larch (Larix decidua) and loblolly pine (Pinus taeda) were examined. Additionally, five different pellet samples from Austrian pellet producers were investigated. Soxhlet extraction with acetone was used to extract the organic content. The concentration of CO and VOCs was measured from stored wood materials and pellets in sealed glass flasks. The highest (3,41 mg CO/kg sample dm/d) and the lowest (0,02 mg CO/kg sample dm/d) release of CO were reported with freshly produced pine pellets and a spruce pellets sample from an Austrian do-it-yourself store, respectively. The results showed that the pelletizing process reduced the content of organic extractives. The emissions of pine samples concerning CO and VOCs were higher than of the spruce and larch samples. Moreover, the organic extractive content also decreased in that order. However, a direct correlation between organic extractive content and released quantities of emissions could not be established.
Peer Reviewed Scientific Journals | 2012
Emissionsfaktoren und chemische Charakterisierung von Feinstaubemissionen moderner und alter Biomasse-Kleinfeuerungen über typische Tageslastverläufe
Kelz J, Brunner T, Obernberger I. Emission factors and chemical characterisation of fi ne particulate emissions from modern and old residential biomass heating systems determined for typical load cycles. Environmental Sciences Europe. 2012;24(3).
Conference contributions | 2014
Empirical analysis of biomass and energy price volatility
Kristöfel C, Strasser C, Morawetz U, Schmid E. Empirical analysis of biomass and energy price volatility. Schriften der GEWISOLA. 2014;49:385-386. (peer reviewed) (visual presentation)
The current debate on biomass price volatility mainly refers to increased market dynamics and integration as well as renewable energy policy intervention. Higher price volatility leads to additional costs that are often transmitted along the supply chain to the final consumers. We empirically analyze whether or not price volatility of woody biomass commodities has increased in recent years. Results indicate that the price volatility of some woody biomass
commodities has increased, but it is still lower than of fossil fuels.
BEST
Bioenergy and
Sustainable Technologies