Publikationen
Conference contributions | 2012
High efficient industrial process carbon capture (CC) – Field tests
Martini S, Kleinhappl M, Zeisler J. High efficient industrial process carbon capture (CC) – Field tests, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 1127-1131.
In large scale industrial processes, such as iron production, or in gasification based process chains (coal/biomass to synthesis gas, fuel, or power, etc.), the separation of CO2 (Carbon Capture-CC) can lead to ecological and procedural benefits. Chemical absorption of CO2 is a well proved technology for CC with comparatively low electrical energy demand. However, the high heat demand, absorption kinetics, CO2 capacity and sorbent degradation are limiting factors for the industrial application. Further investigation and development of sorbent-solutions in relation to specific gas conditions are necessary for optimisation. For testing different sorbent-solutions a mobile test plant was designed and built up. Focus of this work was the evaluation of process key data for CC in blast furnace gas under real conditions. The tests have been carried out continuously up to 300 hours. Aqueous monoethanol-amine (MEA), diethanol-amine (DEA) and methyl-diethanol-amine (MDEA) solutions have been investigated. Detailed analyses of the process gas, analyses of used liquids (chemical properties, degradation products) and the examination of process data lead to further development in process design, control strategies for specific applications and give routes for an efficient implementation of CC to increase the benefit in the overall process chain.
Reviewed Conference Papers | 2015
Heat pump enhanced heat recovery from flue gas of wood chips combustion
Hebenstreit B, Schwabl M, Höftberger E, Kronberger B, Gappmayr B, Gautsch H, Lundgren J, Toffolo A. Heat pump enhanced heat recovery from flue gas of wood chips combustion, INFUB 10th European Conference on Industrial Furnace and Boilers 2015, 7th-10th of April 2015, Porto, Portugal.
Conference Papers | 2017
HCNG or hythane production from biomass steam gasification
Kraussler M, Priscak J, Hofbauer H. HCNG or hythane production from biomass steam gasification. 5th Central European Biomass Conference (oral presentation). January 2017, Graz, Austria.
Conference Papers | 2016
Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass
Ludwiczek N, Bacovsky D, Sonnleitner A, Strasser C. Harmonised Greenhouse Gas Calculations for Electricity, Heating and Cooling from Biomass. e-nova 2016 (oral presentation). November 2016, Pinkafeld, Austria.
Other Presentations | 2014
H2S and NH3 tolerance of acidophilic sulfur-oxidizing bacteria
Rachbauer L, Lorber G, Ortner M, Bochmann G. H2S and NH3 tolerance of acidophilic sulfur-oxidizing bacteria, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.
Conference contributions | 2010
Grid autarchy of automated pellets combustion systems by the means of thermoelectric generators
Höfteberger E, Moser W, Aigenbauer S, Friedl G, Haslinger W. Grid autarchy of automated pellets combustion systems by the means of thermoelectric generators, Thermoelectrics goes Automotive 2010, 9th-10th of December 2010, Berlin, Germany.
Scientific Journals | 2017
Green P – Nutzung von Verkehrsflächen zur Biomasseproduktion
Lichtenegger K, Zellinger M, Schipfer F. Green P – Nutzung von Verkehrsflächen zur Biomasseproduktion. Biobased Future 7. Jänner 2017.
Conference contributions | 2017
GrateAdvance - Advanced adjustable grate solutions for future fuel flexible biomass combustion technologies
Feldmeier S, Wopienka E, Schwarz M. GrateAdvance - Advanced adjustable grate solutions for future fuel flexible biomass combustion technologies. 5th Central European Biomass Conference, Workshop Highlights of Bioenergy Research 2017 (oral presentation). January 2017, Graz, Austria.
Conference contributions | 2020
GrateAdvance - Advanced adjustable grate solutions for future fuel flexible biomass combustion technologies
Barroso G, Essl M, Feldmeier S, Mehrabian R, Nussbaumer T, Öhman M, Reiterer T, Schwarz M, Shiehnejad-Hesar A, Wopienka E. GrateAdvance - Advanced adjustable grate solutions for future fuel flexible biomass combustion technologies. 6th Central European Biomass Conference, 2020, Graz.
Contributions to trade journals | 2012
Global effects of national biomass production and consumption: Austria's embodied HANPP related to agricultural biomass in the year 2000
Haberl H, Kastner T, Schaffartzik A, Ludwiczek N, Erb K-. Global effects of national biomass production and consumption: Austria's embodied HANPP related to agricultural biomass in the year 2000. Ecol Econ. 2012;84:66-73.
Global trade of biomass-related products is growing exponentially, resulting in increasing 'teleconnections' between producing and consuming regions. Sustainable management of the earth's lands requires indicators to monitor these connections across regions and scales. The 'embodied human appropriation of NPP' (eHANPP) allows one to consistently attribute the HANPP resulting from production chains to consumers. HANPP is the sum of land-use induced NPP changes and biomass harvest. We present the first national-level assessment of embodied HANPP related to agriculture based on a calculation using bilateral trade matrices. The dataset allows (1) the tracing of the biomass-based products consumed in Austria in the year 2000 to their countries of origin and quantifying the HANPP caused in production, and (2) the assigning of the national-level HANPP on Austria's territory to the consumers of the products on the national level. The dataset is constructed along a consistent system boundary between society and ecosystems and can be used to assess Austria's physical trade balance in terms of eHANPP. Austria's eHANPP-trade balance is slightly negative (imports are larger than exports); import and export flows are large in relation to national HANPP. Our findings show how the eHANPP approach can be used for quantifying and mapping the teleconnections related to a nation's biomass metabolism. © 2012 Elsevier B.V.
Conference contributions | 2010
Gasification of residues and waste wood in a dual fluidized bed steam gasifier
Wilk V, Kitzler H, Hofbauer H. Gasification of residues and waste wood in a dual fluidized bed steam gasifier, ICPS 2010, 7th-9th of September 2010, Leipzig, Germany.
Because of the limited resources of fossil fuels the efficient use of renewable energy is gaining importance. Renewable energy from biomass reduces CO2 emissions, which is a necessity to protect the global climate. In the dual fluidised bed steam gasifier wood chips are converted to heat, power and other products very successfully. This work presents alternative feedstocks for this process: biomass wastes, such as waste wood, bark and reed. Waste wood and bark have been gasified successfully and first results of these experiments in the pilot plant are presented in this paper. It has been assessed that reed is also an interesting feedstock suitable for the use in fluidised bed gasifiers.
Other Presentations | 2012
Gasaufbereitung für die Fischer-Tropsch-Synthese
Pölzl, P. Gasaufbereitung für die Fischer-Tropsch-Synthese, Master Thesis, Technische Universität Wien, Vienna, Austria, 2012.
Conference contributions | 2010
Gas Cleaning and Treatment of product gas of a dual fluidised bed gasifier for CHP and synthesis applications
Rauch R. Gas Cleaning and Treatment of product gas of a dual fluidised bed gasifier for CHP and synthesis applications, SNG 2010, 30th of June-1st of July 2010, Concepcion, Chile.
Conference Papers | 2019
Ganzheitliche Planung dezentraler Energiekonzepte durch mathematische Optimierung
Liedtke P, Stadler M, Zellinger M, Hengl F. Ganzheitliche Planung dezentraler Energiekonzepte durch mathematische Optimierung. e-nova Konferenz 2019.
Conference contributions | 2012
Fuel indexes –a novel method for the evaluation of relevant combustion properties of new biomass fuels
Sommersacher P, Brunner T, Obernberger I. Fuel indexes –a novel method for the evaluation of relevant combustion properties of new biomass fuels, Conference Impacts of Fuel Quality on Power Production and Environment 2012, 23th-27th of September 2012, Puchberg, Austria.
The increasing demand for biomass fuels leads to the introduction of new biomass fuels into the market. These new biomass fuels (e.g., wastes and residues from agriculture and the food industry, short rotation coppices, and energy crops) are usually not well-defined regarding their combustion behavior. Therefore, fuel characterization methods with a special focus on combustion-related problems (gaseous NOx, HCl, and SOx emissions, ash-melting behavior, and PM emissions) have to be developed. For this purpose, fuel indexes are an interesting option. Fuel indexes are derived from chemical fuel analyses and are checked and evaluated regarding their applicability by measurements performed at lab- and real-scale combustion plants for a large variety of fuels. They provide the possibilities for a pre-evaluation of combustion-relevant problems that may arise from the use of a new biomass fuel. A possible relation to describe the corrosion risk is, for instance, the molar 2S/Cl ratio. The N content in the fuel is an indicator for NOx emissions, and the sum of the concentrations of K, Na, Zn, and Pb in the fuel can give a prediction of the aerosol emissions, whereas the molar (K + Na)/[x(2S + Cl)] ratio provides a first indication regarding the potential for gaseous HCl and SOx emissions. The molar Si/K ratio can supply information about the K release from the fuel to the gas phase. The molar Si/(Ca + Mg) ratio can give indications regarding the ash-melting temperatures for P-poor fuels. For P-rich fuels, the (Si + P + K)/(Ca + Mg) ratio can be used for the same purpose. The fuel indexes mentioned can provide a first pre-evaluation of combustion-relevant properties of biomass fuels. Therefore, time-consuming and expensive combustion tests can partly be saved. The indexes mentioned are especially developed for grate combustion plants, because interactions of the bed material possible in fluidized-bed combustion systems are not considered.
Conference contributions | 2012
Frauen‐ und Familienförderung beginnt bei Männern – Systematisches Karenzmanagement für Mütter, Väter und das Unternehmen
Haslinger W. Frauen‐ und Familienförderung beginnt bei Männern – Systematisches Karenzmanagement für Mütter, Väter und das Unternehmen, Expertenforum K3 "Karenzmanagement macht Karriere" 2012, 9th of May 2012, Linz, Austria.
Conference contributions | 2015
Forecasting the Pellet Boiler Stock in Austria until 2030 and Assessing the Potential to Reduce GHG Emissions and Substitute Fossil Fuels
Karner K, Schmid E, Strasser C, Kristöfel C, Enigl M. Forecasting the Pellet Boiler Stock in Austria until 2030 and Assessing the Potential to Reduce GHG Emissions and Substitute Fossil Fuels, 23rd European Biomass Conference 2015, 1st-4th of June 2015, Vienna, Austria. (visual presentation)
Technical Reports | 2019
Fischer-Tropsch products from biomass-derived syngas and renewable hydrogen
Gruber H, Groß P, Rauch R, Reichhold A, Zweiler R, Aichernig C, Müller S, Ataimisch N, Hofbauer H. Fischer-Tropsch products from biomass-derived syngas and renewable hydrogen. 2019.
Global climate change will make it necessary to transform transportation and mobility away from what we know now towards a sustainable, flexible, and dynamic sector. A severe reduction of fossil-based CO2 emissions in all energy-consuming sectors will be necessary to keep global warming below 2 °C above preindustrial levels. Thus, long-distance transportation will have to increase the share of renewable fuel consumed until alternative powertrains are ready to step in. Additionally, it is predicted that the share of renewables in the power generation sector grows worldwide. Thus, the need to store the excess electricity produced by fluctuating renewable sources is going to grow alike. The “Winddiesel” technology enables the integrative use of excess electricity combined with biomass-based fuel production. Surplus electricity can be converted to H2 via electrolysis in a first step. The fluctuating H2 source is combined with biomass-derived CO-rich syngas from gasification of lignocellulosic feedstock. Fischer-Tropsch synthesis converts the syngas to renewable hydrocarbons. This research article summarizes the experiments performed and presents new insights regarding the effects of load changes on the Fischer-Tropsch synthesis. Long-term campaigns were carried out, and performance-indicating parameters such as per-pass CO conversion, product distribution, and productivity were evaluated. The experiments showed that integrating renewable H2 into a biomass-to-liquid Fischer-Tropsch concept could increase the productivity while product distribution remains almost the same. Furthermore, the economic assessment performed indicates good preconditions towards commercialization of the proposed system.
Peer-reviewed publications | 2013
Fischer Tropsch Synthesis to Biofuels (BtL Process)
Rauch R, Kiennemann A, Sauciuc A. Fischer Tropsch Synthesis to Biofuels (BtL Process). The role of catalysis for the sustainable production of Bio-fuels and Bio-chemicals. ISBN 978-0-444-56330-9 2013:397-443.
Fischer-Tropsch (FT) synthesis is one option to produce liquid transportation fuels from carbon-containing feedstocks. In the past, FT synthesis was used mainly to convert coal or natural gas to diesel and gasoline. In the last decade, much R&D effort has been made to use this technology to convert biomass to a high-quality transportation fuel. In this chapter, the technology for BtL (conversion of biomass to liquid transportation fuels over FT synthesis) is described, from synthesis gas production including requirements on the gas quality to a detailed description of the FT synthesis itself. The main focus of this chapter is to give an overview of the types of catalysts, also including their preparation, reduction, and aging; the types of FT reactors; and also the reaction conditions including kinetic laws and mechanistic proposals.
Other Presentations | 2009
First test runs and tar analyses of a low temperature pyrolysis
Wolfesberger, U. First test runs and tar analyses of a low temperature pyrolysis, Master Thesis, Vienna University of Technology, Vienna, Austria, 2009.
The global warming, the increasing CO2 emission, the combustion and dependency on fossil fuels, as well as the high-energy prices have resulted in an increasing demand in renewable energy sources. Biomass, as a renewable energy source, has the potential to contribute to the future energy mix in many countries. In this thesis the so-called low temperature or slow pyrolysis is chosen to convert biomass into energy rich products. Pyrolysis is a process to convert biomass directly into solid, liquid and gaseous products by thermal decomposition in absence of oxygen. The goal of the pilot plant Dürnrohr is to generate a combustible gas to substitute fossil fuels in the thermal power plant Dürnrohr. The complete process consists of individual steps. First of all the biomass is pyrolysed and pyrolysis gas and pyrolysis char are produced. The obtained pyrolysis gas is combusted in a fluidized bed combustion chamber implemented as afterburner. The following step is fluidized bed combustion of
the intermediate-stored pyrolysis char. Due to the use of different biomasses and adjustment of the individual steps, the process should be optimized for the application for the power plant Dürnrohr. One major point of the production of the pyrolysis gas is the amount of tar. The tar amount was analyzed during pyrolysis operation to find out how much tar is produced at which process settings with a main focus on the temperature. The gravimetric
analysis included gravimetric tar, dust, entrained char, water content and ph-value, as well as the GC/MS tars of the pyrolysis gas. All these data was sampled, analyzed and evaluated as well as discussed.
Other Presentations | 2014
Fermentation of biomass from micro algae
Gruber M, Zohar E, Jerney J, Bochmann G, Obbard JP, Schagerl M, Fuchs W, Drosg B. Fermentation of biomass from micro algae, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.
Peer Reviewed Scientific Journals | 2020
Fate of Phosphorus in Fluidized Bed Cocombustion of Chicken Litter with Wheat Straw and Bark Residues
Häggström G, Fürsatz K, Kuba M, Skoglund N, Öhman M. Fate of Phosphorus in Fluidized Bed Cocombustion of Chicken Litter with Wheat Straw and Bark Residues. Energy and Fuels. 2020.34:1822-1829
This study aims to determine the fate of P during fluidized bed co-combustion of chicken litter (CL) with K-rich fuels [e.g., wheat straw (WS)] and Ca-rich fuels (bark). The effect of fuel blending on phosphate speciation in ash was investigated. This was performed by chemical characterization of ash fractions to determine which phosphate compounds had formed and identify plausible ash transformation reactions for P. The ash fractions were produced in combustion experiments using CL and fuel blends with 30% CL and WS or bark (B) at 790–810 °C in a 5 kW laboratory-scale bubbling fluidized bed. Potassium feldspar was used as the bed material. Bed ash particles, cyclone ash, and particulate matter (PM) were collected and subjected to chemical analysis with scanning electron microscopy–energy-dispersive X-ray spectrometry (SEM–EDS) and X-ray diffraction. P was detected in coarse ash fractions only, that is, bed ash, cyclone ash, and coarse PM fraction (>1 μm); no P could be detected in the fine PM fraction (<1 μm). SEM–EDS analysis showed that P was mainly present in K–Ca–P-rich areas for pure CL as well as in the ashes from the fuel blends of CL with WS or B. In the WS blend, P was found together with Si in these areas. The crystalline compound containing P was hydroxyapatite in all cases as well as whitlockite in the cases of pure CL and WS blend, of which the latter compound has been previously identified as a promising plant nutrient. The ash fractions from CL and bark blend only contained P in hydroxyapatite. Co-combustion of CL together with WS appears to be promising for P recovery, and ashes with this composition could be further studied in plant growth experiments
Studien | 2019
Factsheet Staubemissionen
Schwarz M, Strasser C. Factsheet Staubemissionen. 2019
Zum Erreichen der Ziele der österreichischen Klimastrategie leisten Biomassefeuerungen einen entscheidenden Beitrag. Um dabei die Luftgüte nicht außer Acht zu lassen, wird in diesem Factsheet der aktuelle und zukünftige Status (bis 2050) von Staubemissionen in Österreich basierend auf Literaturdaten und eigenen Messungen dargelegt, und der aktuelle Kenntnisstand zu Emissionen aus Biomasse-Kleinfeuerungen zusammengefasst.
Contributions at other events | 2013
Extending the range of feedstock of the dual fluidized bed gasification process towards residues and waste
Wilk, V. Extending the range of feedstock of the dual fluidized bed gasification process towards residues and waste, Ph.D. Thesis, Vienna University of Technology, Vienna, Austria, 2013.
Scientific Journals | 2018
Experiments and modelling of NOx precursors release (NH3 and HCN) in fixed-bed biomass combustion conditions
Anca-Couce A, Sommersacher P, Evic N, Mehrabian R, Scharler R. Experiments and modelling of NOx precursors release (NH3 and HCN) in fixed-bed biomass combustion conditions. Fuel. 2018, 222: 529-537.
There is a need to reduce NOx emissions, which can only be achieved through a detailed understanding of the mechanisms for their formation and reduction. In this work the release of the NOx precursors, NH3 and HCN, for different fuels is experimentally analysed and modelled in typical fixed-bed combustion conditions. It is shown that NH3 and HCN are released during the main devolatilization phase and the NH3/HCN ratio increases for fuels with a higher nitrogen content. A simplified two-steps model for their release is presented. The model can predict with a reasonable accuracy the release for fuels with a low nitrogen content, however deviations are present for fuels with a high nitrogen content, which probably arise due to a reduction of NH3 and HCN taking place already in the bed.
BEST
Bioenergy and
Sustainable Technologies