Sortierung Titel Year

Publikationen


Conference contributions | 2012

Processing Options Of Heavy Fractions From MBT Plants

Meirhofer M, Ragoßnig AM, Sommer M. Processing Options Of Heavy Fractions From MBT Plants, ISWA Annual Congress Florence 2012, 17th-19th of September 2012, Florence, Italy. (peer reviewed)

Details

Heavy fractions resulting from mechanical treatment stages of Mechanical Biological Treatment (MBT) plants are posing very specific demands with regard to further treatment/disposal as they contain a high portion of inert material as well as a high portion of high calorific components. Based on the current Austrian legal situation (landfill ordinance: max. Higher Calorific Value (HCV) for MBT-fractions to be landfilled = 6,600 kJ/kg DM) this waste stream cannot be landfilled but must be thermally treated. In economic terms it is desirable to separate high calorific from inert waste components in order to allow for a material specific routing taking advantage of the difference in the costs for the downstream treatment / disposal.
In this conference contribution results of extensive processing experiments with the heavy fraction from the mechanical stage of the MBT plant of Umweltdienst Burgenland in Oberpullendorf, Austria, are presented. Experiments have been conducted with three different sensor-based automatic sorting systems (NIR – Multiplexer, NIR – Spectral Imaging, X-Ray transmission) as well as two density based processing technologies (wet treatment with a jigger, dry treatment with a cross flow air separation device). In addition a rotary shredder, which allows selective crushing, followed by screening has been investigated.
The performance of the processing options have been evaluated by characterizing the resulting product streams by means of manual sorting in order to evaluate purity and yield achieved by the respective treatment options. In addition to that chemical and physical parameters relevant for further treatment / disposal steps for the resulting product streams have been analysed. The inert fraction has been evaluated regarding the landfilling on a mass waste landfill on one hand and on a C&D waste landfill on the other hand. The high calorific product stream has been evaluated with regard to its thermal utilization.
Complementing the technical evaluation of the processing options an economical assessment of the processing options looked at including the economical implications of the resulting changes in the routing of the waste streams has been conducted.


Conference contributions | 2012

Processing Options Of Heavy Fractions From MBT Plant

Meirhofer M, Ragoßnig AM, Sommer M. Processing Options Of Heavy Fractions From MBT Plant, ISWA Annual Congress Florence 2012, 18th of September 2012, Florence, Italy.

Details


Other Presentations | 2019

Primäre und sekundäre Verbesserungen an einem Biomassekessel für Agrarbrennstoffe

Zemann C, Kelz J, Muschick D, Retschitzegger S, Gölles M. Primäre und sekundäre Verbesserungen an einem Biomassekessel für Agrarbrennstoffe. 10. Fachgespräch: Partikelabscheider in häuslichen Feuerungen. 20. März 2019 (2019). [online]. (Tagungsreader, 15). Leipzig: DBFZ. 168 S.

External Link

Download PDF

Details

ie Biomasseverbrennung spielt eine zentrale Rolle bei der Bereitstellung von Wärme aus erneuerbaren Energieträgern. Konventionelle Biomasse-Brennstoffe werden jedoch aufgrund einer steigenden Anzahl stofflicher Verwertungsmöglichkeiten, wie z.B. der Umwandlung in Chemikalien, teurer und schwieriger zugänglich. Agrarbrennstoffe, die bisher nur selten oder gar nicht in Biomasse-Kleinfeuerungen eingesetzt wurden, stellen eine vielversprechende Alternative zu konventionellen Brennstoffen dar. Diese Agrarbrennstoffe, wie zum Beispiel Kurzumtrieb, Maisspindeln oder Stroh sind kostengünstig und in ausreichender Menge vorhanden. Der Einsatz von Agrarbrennstoffen in konventionellen Biomasse-Kleinfeuerungen ist jedoch aufgrund stark variierender Brennstoffeigenschaften mit erhöhten Anforderungen an das Verbrennungssystem verbunden. Erhöhte N, S, Cl, Alkalimetall- und Aschegehalte sowie niedrigere Aschenschmelzpunkte können zu aschebedingten Problemen (Ascheschmelze, Ascheablagerung und Korrosion) sowie erhöhten Konzentrationen von gasförmigen (CO, NOx, HCl und SOx) und partikelförmigen Emissionen bei der Verbrennung führen.

Ziel der in diesem Beitrag präsentierten Arbeiten war die Erhöhung die Brennstoffflexibilität einer handelsüblichen Biomasse-Kleinfeuerung um damit eine Verbrennung von Agrarbrennstoffen mit niedrigen Schadstoffemissionen und einem hohen Wirkungsgrad zu ermöglichen. Hierzu wurde eine modellbasierte Regelung entwickelt, welche insbesondere eine gezielte Einstellung des Luftverhältnisses in der Primärverbrennungszone ermöglicht und damit das Risiko der Ascheschmelze reduziert und Schadstoffmissionen verringert. Soft-Sensoren bestimmen relevante Brennstoffeigenschaften während des Betriebs, welche von der modellbasierten Regelung zur automatischen Anpassung an geänderte Brennstoffeigenschaften genutzt werden. Die modellbasierte Regelung wurde um eine CO-lambda-Optimierung ergänzt, welche auf Basis von Messwerten des Restsauerstoffgehalts und der CO-Emissionen den Wirkungsgrad der Verbrennung maximiert und gleichzeitig die Schadstoffemissionen verringert. Zur weiteren Verringerung von partikelförmigen Schadstoffemissionen wurde ein am Markt verfügbarer Elektrofilter adaptiert und nach dem Wärmeübertrager der Biomasse-Kleinfeuerung angebracht.

Dieses Verbrennungssystem wurde durch umfassende Testläufe mit begleitenden Emissionsmessungen sowie Brennstoff-, Staub- und Ascheanalysen bewertet. Der Einsatz der modellbasierten Regelung führte zu einem stabileren Betrieb bei allen Leistungen und für alle Brennstoffe. Der Elektrofilter zeigte sehr zufriedenstellende Abscheidegrade für alle untersuchten Brennstoffe und Anlagenleistungen. Dadurch konnte die Brennstoffflexibilität der handelsüblichen Biomasse-Kleinfeuerung erhöht und die Verbrennung von Agrarbrennstoffen ermöglicht werden.

 


Conference contributions | 2020

Primary- and Secondary Measures for Manually Fired Stoves - An Overview

Reichert G. Primary- and Secondary Measures for Manually Fired Stoves - An Overview. 6th Central European Biomass Conference, 2020, Graz.

Download PDF

Details


Conference contributions | 2009

Primary measures for low-emission residential wood combustion – comparison of old with optimised modern systems

Brunner T, Obernberger I, Scharler R. Primary measures for low-emission residential wood combustion – comparison of old with optimised modern systems, 17th European Biomass Conference 2009, 29th of June-3rd of July 2009, Hamburg, Germany.

Details


Conference contributions | 2014

Price cointegration in the Austrian wood fuel market,

Kristöfel C, Morawetz UB, Schmid E, Strasser C. Price cointegration in the Austrian wood fuel market, 22nd European Biomass Conference 2014, 23rd-26th of June 2014, Hamburg, Germany. p 1330-1335.

Details

The wood fuel market is connected to the forest­based industry in various ways: the sawmill by­ products such as sawdust and wood chips are usually used as raw material in the panel, pulp and paper industry and are increasingly pelletized to supply the energy commodity market. Hence, the question arises whether or not prices of these woody biomass commodities are integrated. Threshold cointegration and asymmetric error correction models are used to analyze the price dynamics between roundwood, wood pellets and sawmill by­ products. Results indicate that a statistical significant price transmission between sawmill by­products and wood pellets, but wood pellet and roundwood prices are not integrated. The price transmission between wood pellets and sawdust as well as wood chips is asymmetric. The Granger Causality test reveals that the prices of sawdust and wood chips depend on the price of wood pellets.


Peer Reviewed Scientific Journals | 2020

Prediction of slag related problems during fixed bed combustion of biomass by application of a multivariate statistical approach on fuel properties and burner technology

Rebbling A, Näzelius IL, Schwabl M, Feldmeier S, Schön C, Dahl J, Haslinger W, Boström D, Öhman M, Boman C. Prediction of slag related problems during fixed bed combustion of biomass by application of a multivariate statistical approach on fuel properties and burner technology. Biomass and Bioenergy 2020.137:105557.

External Link

Details

Slag is related to the melting properties of ash and is affected by both the chemical composition of the fuel ash and the combustion parameters. Chemical analysis of slag from fixed bed combustion of phosphorus-poor biomass show that the main constituents are Si, Ca, K, O (and some Mg, Al, and Na), which indicates that the slag consists of different silicates. Earlier research also points out viscosity and fraction of the ash that melts, as crucial parameters for slag formation. To the authors’ knowledge, very few of the papers published to this day discuss slagging problems of different pelletized fuels combusted in multiple combustion appliances. Furthermore, no comprehensive classification of both burner technology and fuel ash parameters has been presented in the literature so far. The objective of the present paper was therefore to give a first description of a qualitative model where ash content, concentrations of main ash forming elements in the fuel and type of combustion appliance are related to slagging behaviour and potential operational problems of a biomass fuel in different small- and medium scale fixed bed appliances.

Based on the results from the combustion of a wide range of pelletized biomass fuels in nine different burners, a model is presented for amount of slag formed and expected severity of operational problems. The model was validated by data collected from extensive combustion experiments and it can be concluded that the model predicts qualitative results.


Conference contributions | 2012

Prediction of biomass ash melting behaviour – correlation between the data obtained from thermodynamic equilibrium calculations and simultaneous thermal analysis (STA)

Evic N, Brunner T, Oberberger I. Prediction of biomass ash melting behaviour – correlation between the data obtained from thermodynamic equilibrium calculations and simultaneous thermal analysis (STA), 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 807-813.

Details


Scientific Journals | 2018

Power to fuels: Dynamic modeling of a Slurry Bubble Column Reactor in lab-scale for Fischer Tropsch synthesis under variable load of synthesis gas

Seyednejadian S, Rauch R, Bensaid S, Hofbauer H, Weber G, Saracco G. Power to fuels: Dynamic modeling of a Slurry Bubble Column Reactor in lab-scale for Fischer Tropsch synthesis under variable load of synthesis gas. Apllied Sciences. 2018, 8(4): 514.

External Link

Details

This research developed a comprehensive computer model for a lab-scale Slurry Bubble Column Reactor (SBCR) (0.1 m Dt and 2.5 m height) for Fischer–Tropsch (FT) synthesis under flexible operation of synthesis gas load flow rates. The variable loads of synthesis gas are set at 3.5, 5, 7.5 m3/h based on laboratory adjustments at three different operating temperatures (483, 493 and 503 K). A set of Partial Differential Equations (PDEs) in the form of mass transfer and chemical reaction are successfully coupled to predict the behavior of all the FT components in two phases (gas and liquid) over the reactor bed. In the gas phase, a single-bubble-class-diameter (SBCD) is adopted and the reduction of superficial gas velocity through the reactor length is incorporated into the model by the overall mass balance. Anderson Schulz Flory distribution is employed for reaction kinetics. The modeling results are in good agreement with experimental data. The results of dynamic modeling show that the steady state condition is attained within 10 min from start-up. Furthermore, they show that step-wise syngas flow rate does not have a detrimental influence on FT product selectivity and the dynamic modeling of the slurry reactor responds quite well to the load change conditions.


Conference Papers | 2016

Possibility of industrial scale BioH2 production from product gas in existing dual fluidized bed biomass gasification plant

Jovanovic A, Stamenkovic M, Nenning L, Rauch R. Possibility of industrial scale BioH2 production from product gas in existing dual fluidized bed biomass gasification plant. 4th International Symposium on Environment Friendly Energies and Applications, EFEA 2016. 18 November 2016, Belgrade, Serbia.

External Link

Details

Conceptual solution of production of pure renewable hydrogen from wood gas or product derived from the commercial biomass steam gasification plant Güssing, Austria was carried out. The proposed process of product gas upgrading consisted of tree basic operations: (I) catalyzed water-gas shift (WGS) reaction, (II) gas drying and cleaning in a wet scrubber and (III) hydrogen purification by pressure swing adsorption. The tail gas or adsorbate can be used like fuel for gas engine for electrical energy production or like a boiler fuel for hot water-heat production.


Conference contributions | 2009

Possibilities of Ash Utilisation from Biomass Combustion Plants

Obernberger I, Supancic K. Possibilities of Ash Utilisation from Biomass Combustion Plants, 17th European Biomass Conference 2009, 29th of June-3rd of July 2009, Hamburg, Germany. p 2373-2384.

Details


Conference Papers | 2017

Polygeneration of hydrogen and a gas mixture composed of H2 and CH4 via sorption enhanced reforming of biomass

Kraussler M, Priscak J, Benedikt F, Hofbauer H. Polygeneration of hydrogen and a gas mixture composed of H2 and CH4 via sorption enhanced reforming of biomass. 25th European Biomass Conference & Exhibition (oral presentation). June 2017, Stockholm, Sweden.

Details


Conference contributions | 2010

PM emissions from old and modern biomass combustion systems and their health effects

Kelz J, Brunner T, Obernberger I, Hirvonen M, Javala P. PM emissions from old and modern biomass combustion systems and their health effects, 18th European Biomass Conference and Exhibition 2010, 3rd-7th of May 2010, Lyon, France. p 1231-1243.

Details


Peer Reviewed Scientific Journals | 2019

Planning and implementation of bankable microgrids

Stadler M, Nasle A. Planning and implementation of bankable microgrids. The Electricity Journal 2019. 32:24-29.

External Link

Details

Currently, many Microgrid projects remain financially uncertain and not bankable for institutional investors due to major challenges in existing planning and design methods that require multiple, complex steps and software tools.

Existing techniques treat every Microgrid project as a unique system, resulting in expensive, non-standardized approaches and implementations which cannot be compared. That is, it is not possible to correlate the results from different planning methods performed by different project developers and/or engineering companies.

This very expensive individual process cannot guarantee financial revenue streams, cannot be reliably audited, impedes pooling of multiple Microgrid projects into a financial asset class, nor does it allow for wide-spread and attractive Microgrid and Distributed Energy Resource projects deployment.

Thus, a reliable, integrated, and streamlined process is needed that guides the Microgrid developer and engineer through conceptual design, engineering, detailed electrical design, implementation, and operation in a standardized and data driven approach, creating reliable results and financial indicators that can be audited and repeated by investors and financers.

This article describes the steps and methods involved in creating bankable Microgrids by relying on an integrated Microgrid planning software approach that unifies proven technologies and tested planning methods, researched and developed by the United States National Laboratory System as well as the US Department of Energy, to reduce design times.


Peer Reviewed Scientific Journals | 2019

Photoautotrophic production of poly-hydroxybutyrate – First detailed cost estimations

Panuschka S, Drosg B, Ellersdorfer M, Meixner K, Fritz I. Photoautotrophic production of poly-hydroxybutyrate – First detailed cost estimations. Algal Research 2019.41:101558.

External Link

Details

Political, economic and ecological reasons have recently been leading to efforts to replace fossil hydrocarbons and their products in a sustainable way. In order to replace fossil-based polymers, photoautotrophically produced polyhydroxybutryrates (PHBs), which are intracellular carbon storage products of nutrient-deprived microorganisms, seem to be a promising, biobased and biodegradable alternative. Although laboratory and pilot scale experiments have already been performed, no economic evaluation has been carried out so far. Consequently, valid claims on PHB production costs and the influence of different parameters, such as intracellular PHB-content, choice of cultivation system or location, cannot be made. In this study potential demonstration plants, equipped with different photoautotrophic cultivation systems and located at two sites, were designed to identify key parameters for a successful economic realization and implementation. Material and energy balances were determined to reveal specific PHB production costs for four different scenarios. Raw material and operating supply costs, expenditures for plant construction and operation as well as product amounts were determined using literature data for specified results from laboratory and pilot scale experiments. The lowest calculated PHB production price (24 € kg−1) accomplished in a thin-layer-system plant located in Southern Europe with 60% PHB-content of the produced biomass is significantly higher than the current market price of heterotrophically produced PHB. The most important cost factors in all scenarios are cultivation and harvesting costs accounting for 62 to 72% of the total specific production costs, followed by maintenance costs with a cost share of 11 to 14%. Therefore, the choice of a suitable cultivation system is the key driving factor for an economic PHB-production due to the currently high investment costs for photosynthetic biomass production systems. Specific production costs for a Southern compared to a Central European location amount to almost half of the costs.


Conference Papers | 2016

Phase Sewparation Behaviour of FAME and Water

Bardolf R, Thoma C, Bosch K, Rauch R, Hofbauer H. Phase Sewparation Behaviour of FAME and Water. 24th European Biomass Conference & Exhibition (poster). June 2016, Amsterdam, Netherlands.

Details


Conference contributions | 2014

Performances of a non-sulfided CoMo/SiO2-Al2O3 hydrocracking catalyst used in BtL Technology

Sauciuc A, Ganea R, Dumitrescu L, Rauch R, Hofbauer H. Performances of a non-sulfided CoMo/SiO2-Al2O3 hydrocracking catalyst used in BtL Technology, 4th International Symposium on Gasification and its Applications (iSGA-4) 2014, 2nd-5th of September 2014, Vienna, Austria.

Details


Reviewed Conference Papers | 2017

Performance of a water gas shift unit processing tar-rich product gas from a commercial dual fluidized bed biomass steam gasification plant which operates at partial load

Kraussler M, Binder M, Hofbauer H. Performance of a water gas shift unit processing tar-rich product gas from a commercial dual fluidized bed biomass steam gasification plant which operates at partial load. International Journal of Oil, Gas and Coal Technology. 2017;14(1-2): 32-48.

External Link

Details

In this paper, the performance of a water gas shift unit processing product gas from a commercial dual fluidised bed biomass steam gasification plant is studied. The experiments were carried out during a partial load operation of the gasification plant. In order to investigate a water gas shift process, a water gas shift unit, located at the site of the gasification plant in Oberwart, Austria, was used. The water gas shift unit consisted of three reactors in series filled with a commercial Fe'Cr-based catalyst and was operated with tar-rich product gas. No performance decrease of the water gas shift unit was observed during the partial load operation of the gasification plant. Furthermore, a CO conversion of 92% and a GCMS tar reduction of about 30% were reached. In addition, it was found that partial load operation of the gasification plant did not negatively affect the performance of the water gas shift unit.


Conference Papers | 2015

Performance of a Water Gas Shift Unit Processing Product Gas from Biomass Steam Gasification

Kraussler M, Binder M, Fail S, Rauch R, Bosch K, Hackel M, Hofbauer H. Performance of a Water Gas Shift Unit Processing Product Gas from Biomass Steam Gasification. 23rd European Biomass Conference & Exhibition (oral presentation). June 2015, Vienna, Austria.

Details


Conference Papers | 2015

Performance of a water gas shift pilot plant processing tar-rich product gas from a commercial biomass steam gasification plant operating at partial load conditions

Kraussler M, Binder M, Hofbauer H. Performance of a water gas shift pilot plant processing tar-rich product gas from a commercial biomass steam gasification plant operating at partial load conditions. International Bioenergy Exhibition and Asian Bioenergy Conference 2015. October 2015, Shanghai, China.

Details


Peer Reviewed Scientific Journals | 2015

Performance of a water gas shift pilot plant processing product gas from an industrial scale biomass steam gasification plant

Kraussler M, Binder M, Fail S, Bosch K, Hackel M, Hofbauer H. Performance of a water gas shift pilot plant processing product gas from an industrial scale biomass steam gasification plant. Biomass and Bioenergy. 4 August 2015;89:50-57.

External Link

Details

In this paper, the performance of a commercial Fe/Cr based catalyst for the water gas shift reaction was investigated. The catalyst was used in a water gas shift pilot plant which processed real product gas from a commercial biomass steam gasification plant with two different qualities: extracted before and extracted after scrubbing with a rapeseed methyl ester gas scrubber. The performance of the WGS pilot plant regarding these two different gas qualities was investigated. For this reason, extensive chemical analyses were carried out. CO, CO2, CH4, N2, O2, C2H6, C2H4, and C2H2 and H2S, COS, and C4H4 S were measured. In addition, GCMS tar and NH3 analyses were performed. Furthermore, the catalyst's activity was observed by measuring the temperature profiles along the reactors of the water gas shift pilot plant. During the 200 h of operation with both product gas qualities, no catalyst deactivation could be observed. A CO conversion up to 93% as well as a GCMS tar reduction (about 28%) along the water gas shift pilot plant was obtained. Furthermore, a specific H2 production of 63 g H2 per kg biomass (dry and ash free) was reached with both product gas qualities. No significant performance difference could be observed.


Contributions to trade journals | 2013

Performance of a pellet boiler fired with agricultural fuels

Carvalho L, Wopienka E, Pointner C, Lundgren J, Verma VK, Haslinger W, et al. Performance of a pellet boiler fired with agricultural fuels. Appl Energy. 2013;104:286-96.

External Link

Details

The increasing demand for woody biomass increases the price of this limited resource, motivating the growing interest in using woody materials of lower quality as well as non-woody biomass fuels for heat production in Europe. The challenges in using non-woody biomass as fuels are related to the variability of the chemical composition and in certain fuel properties that may induce problems during combustion. The objective of this work has been to evaluate the technical and environmental performance of a 15. kW pellet boiler when operated with different pelletized biomass fuels, namely straw (Triticum aestivum), Miscanthus (Miscanthus× giganteus), maize (Zea mays), wheat bran, vineyard pruning (from Vitis vinifera), hay, Sorghum (Sorghum bicolor) and wood (from Picea abies) with 5% rye flour. The gaseous and dust emissions as well as the boiler efficiency were investigated and compared with the legal requirements defined in the FprEN 303-5 (final draft of the European standard 303-5). It was found that the boiler control should be improved to better adapt the combustion conditions to the different properties of the agricultural fuels. Additionally, there is a need for a frequent cleaning of the heat exchangers in boilers operated with agricultural fuels to avoid efficiency drops after short term operation. All the agricultural fuels satisfied the legal requirements defined in the FprEN 303-5, with the exception of dust emissions during combustion of straw and Sorghum. Miscanthus and vineyard pruning were the best fuels tested showing comparable emission values to wood combustion. © 2012 Elsevier Ltd.


Conference Papers | 2017

Performance of a mixed alcohol synthesis lab-scale process chain operated with wood gas from dual fluidized bed biomass steam gasification

Binder M, Weber G, Rauch R, Hofbauer H. Performance of a mixed alcohol synthesis lab-scale process chain operated with wood gas from dual fluidized bed biomass steam gasification. 5th Central European Biomass Conference (Poster). January 2017, Graz, Austria.

Details


Conference contributions | 2018

Performance improvement of model-based control strategies in large-scale solar plants and its implementation details

Innerhofer P, Unterberger V, Luidolt P, Lichtenegger K, Gölles M. Performance improvement of model-based control strategies in large-scale solar plants and its implementation details. 5th International Solar District Heating Conference SDH. Graz, Austria: 2018.

Details


Contributions to trade journals | 2013

Performance improvement of dual fluidized bed gasifiers by temperature reduction: The behavior of tar species in the product gas

Kirnbauer F, Wilk V, Hofbauer H. Performance improvement of dual fluidized bed gasifiers by temperature reduction: The behavior of tar species in the product gas. Fuel. 2013;108:534-42.

External Link

Details

To meet the aims of the worldwide effort to reduce greenhouse gas emissions, product gas from biomass steam gasification in DFB (dual fluidized bed) gasification plants can play an important role for the production of electricity, fuel for transportation and chemicals. Using a catalytically active bed material, such as olivine, brings advantages concerning tar reduction in the product gas. Experience from industrial scale gasification plants showed that a modification of the olivine occurs during operation due to the interaction of the bed material with ash components from the biomass and additives. This interaction leads to a calcium-rich layer on the bed material particles which influences the gasification properties and reduces tar concentration in the product gas. In this paper, the influence on the gasification performance, product gas composition and tar formation of a reduction of the gasification temperature are studied. A variation of the gasification temperature from 870 °C to 750 °C was carried out in a 100 kW pilot plant. A reduction of the gasification temperature down to 750 °C reduces the concentration of hydrogen and carbon monoxide in the product gas and increases the concentration of carbon dioxide and methane. The product gas volume produced per kg of fuel is reduced at lower gasification temperatures but the calorific value of the product gas increases. The volumetric concentration of tars in the product gas increases slightly until 800 °C and nearly doubles when decreasing the gasification temperature to 750 °C. The tars detected by gas chromatography-mass spectrometry (GCMS) were classified into substance groups and related to the fuel input to the gasifier and showed a decrease in naphthalenes and polycyclic aromatic hydrocarbons (PAHs) and an increase in phenols, aromatic compounds and furans when reducing the gasification temperature. The comparison with results from an earlier study, where the gasification properties of unused fresh olivine were compared with used olivine, underlines the importance of a long retention time of the bed material in the gasifier, ensuring the formation of a calcium-rich layer in the bed material. © 2012 Elsevier Ltd. All rights reserved.