Publications
Peer Reviewed Scientific Journals | 2018
Cyanobacteria Biorefinery — Production of poly(3-hydroxybutyrate) with Synechocystis salina and utilisation of residual biomass
Meixner K, Kovalcik A, Sykacek E, Gruber-Brunhumer M, Zeilinger W, Markl K, Haas C, Fritz I, Mundigler N, Stelzer F, Neureiter M, Fuchs W, Drosg B. Cyanobacteria Biorefinery — Production of poly(3-hydroxybutyrate) with Synechocystis salina and utilisation of residual biomass. Journal of Biotechnology. 10 January 2018;265(10): 46-53
Scientific Journals | 2019
Cultivation of the microalga Eustigmatos magnus in different photobioreactor geometries and subsequent anaerobic digestion of pre-treated biomass
Gruber-Brunhumer MR, Schöberl A, Zohar E, Koenigsberger S, Bochmann G, Uher B, Lang I, Schagerl M, Fuchs W, Drosg B. Cultivation of the microalga Eustigmatos magnus in different photobioreactor geometries and subsequent anaerobic digestion of pre-treated biomass. Biomass and Bioenergy 2019.105303.
Microalgal biomass as a feedstock for biogas production is linked to the parameters biomass productivity and biogas yield. Besides an easy-to-use strain for anaerobic digestion, the photobioreactor (PBR) design is important. A microalgae strain selection revealed Eustigmatos magnus (SAG 36.89) as the most promising strain yielding an average of 100 mg total suspended solids (TSS) L−1 day−1. The strain was tested in cost-effective sleevebag-PBR-systems of 10 cm, 20 cm and 30 cm diameter facing the light from the front or laterally. Highest mean productivity on a volumetric basis was measured in PBRs with the lowest diameter (104 and 117 mg L−1 day−1. The highest productivity per m−2 was achieved in 10 cm PBRs with front light configuration (9.35 g TSS m−2 day−1). The lateral light configuration of 10 cm PBRs had positive aspects such as the lowest mean water demand to produce 1 kg TSS (481 L−1 kg−1) and the lowest mean energy demand for medium separation of 1 kg TSS (106 Wh). The concentrated microalgal biomass was then subjected to ultrasonication and thermal pre-treatment (90 °C and 120 °C) and tested in BMP tests. Mesophilic anaerobic mono-digestion of untreated microalgae biomass led to a methane (CH4) yield of 343 L−1 kg−1 volatile solids (VS). Thermal pre-treatment at 120 °C resulted in significantly increased CH4 yields of 430 L−1 kg−1 VS. As thermal pre-treatment can be easily installed nearby a biogas plant it could be an interesting option for AD of microalgal biomass with only little investment.
Peer Reviewed Scientific Journals | 2017
CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8 MW fuel input
Kraft S, Kirnbauer F, Hofbauer H. CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8 MW fuel input. Applied Energy. 15 March 2017;190: 408-420.
Dual fluidized bed (DFB) systems for biomass gasification consist of two connected fluidized beds with a circulating bed material in between. Inside such reactor systems, rough conditions occur due to the high temperatures and the movement of the bed material. Computational fluid dynamics calculations are a useful tool for investigating fluid dynamics inside such a reactor system. In this study, an industrial-sized DFB system was simulated with the commercial code CPFD Barracuda. The DFB system is part of the combined heat and power (CHP) plant at Güssing, situated in Austria, and has a total fuel input of 8 MWth. The model was set up according to geometry and operating data which allows a realistic description of the hot system in the simulation environment. Furthermore, a conversion model for the biomass particles was implemented which covers the drying and devolatilization processes. Homogeneous and heterogeneous reactions were considered. Since drag models have an important influence on fluidization behavior, four drag models were tested. It was found that the EMMS drag model fits best, with an error of below 20%, whereas the other drag models produced much larger errors. Based on this drag law, further simulations were conducted. The simulation model correctly predicts the different fluidization regimes and pressure drops in the reactor system. It is also able to predict the compositions of the product and flue gas, as well as the temperatures inside the reactor, with reasonable accuracy. Due to the results obtained, Barracuda seems suitable for further investigations regarding the fluid mechanics of such reactors.
Peer Reviewed Scientific Journals | 2012
Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor
Lauterböck B, Ortner M, Haider R, Fuchs W. Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor. Water Res. 2012;46(15):4861-9.
The aim of the current study was to investigate the feasibility of membrane contactors for continuous ammonia (NH3-N) removal in an anaerobic digestion process and to counteract ammonia inhibition. Two laboratory anaerobic digesters were fed slaughterhouse wastes with ammonium (NH4+) concentrations ranging from 6 to 7.4 g/L. One reactor was used as reference reactor without any ammonia removal. In the second reactor, a hollow fiber membrane contactor module was used for continuous ammonia removal. The hollow fiber membranes were directly submerged into the digestate of the anaerobic reactor. Sulfuric acid was circulated in the lumen as an adsorbent solution. Using this set up, the NH4+-N concentration in the membrane reactor was significantly reduced. Moreover the extraction of ammonia lowered the pH by 0.2 units. In combination that led to a lowering of the free NH3-N concentration by about 70%. Ammonia inhibition in the reference reactor was observed when the concentration exceeded 6 g/L NH4+-N or 1-1.2 g/L NH3-N. In contrast, in the membrane reactor the volatile fatty acid concentration, an indicator for process stability, was much lower and a higher gas yield and better degradation was observed. The chosen approach offers an appealing technology to remove ammonia directly from media having high concentrations of solids and it can help to improve process efficiency in anaerobic digestion of ammonia rich substrates. © 2012 Elsevier Ltd.
Conference contributions | 2014
Cost and energy efficient, environmentally friendly micro and small scale CHP
Haslinger W. Cost and energy efficient, environmentally friendly micro and small scale CHP, 5th AEBIOM European Bioenergy Conference 2014, 12th-14th of May 2014, Brussels, Belgium.
Conference contributions | 2013
Correlation between CO OFF-gassing and Linoleic fatty Acid content of wood Chips and Pellets
Emhofer W, Pöllinger-Zierler B, Siegmund B, Haslinger W, Leitner E. Correlation between CO OFF-gassing and Linoleic fatty Acid content of wood Chips and Pellets, 21st European Biomass Conference and Exhibition 2013, 3rd-7th of June 2013, Copenhagen, Denmark. p 1362-1364.
During storage of wood pellets emissions of carbon monoxide (CO) and a large quantity of volatile organic compounds (VOCs) can be detected. These off-gases have been reported to originate from autooxidation reactions of woods own fatty acids, but data on CO formation rates based on fatty acid content is still scarce. In this paper data on the formation rates of CO from oxidation of pure linoleic acid are presented and compared to CO formation rates measured from spruce shavings, spruce sawdust and pellets made from the respective raw materials. To determine whether linoleic acid content is a realistic prediction tool for CO formation the fatty acid contents of the spruce materials have been determined and a comparison of predicted CO formation rates (based on linoleic acid content) to actually measured CO formation rates has been made. The results show that, albeit the fact that the determination of linoleic acid content is not the sole determining factor for an accurate prediction of CO formation rates, it is a helpful indicator in estimating a critical maximum rate of CO formation. The actual formation rates for CO, however, are typically lower than the predicted values and depend to a large extent on the history of the material and whether or not it has been activated. Activation includes treatments such as pelletizing, drying and/or milling.
Peer Reviewed Scientific Journals | 2020
Correction to: Investigation of solid oxide fuel cell operation with synthetic biomass gasification product gases as a basis for enhancing its performance
Pongratz G, Subotić V, Schroettner H, Stoeckl B, Hochenauer C, Anca-Couce A, Scharler R. Correction to: Investigation of solid oxide fuel cell operation with synthetic biomass gasification product gases as a basis for enhancing its performance. Biomass Conversion and Biorefinery. 2020
The authors want to acknowledge, that during the production of the final version of the publication the image for Figure 9 has been replaced with the image for Figure 12, however without changing the content of the paper. This issue is resolved in the current version of the publication.
Contributions to trade journals | 2013
Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier
Wilk V, Hofbauer H. Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier. Fuel. 2013;107:787-799.
Steam gasification of plastic materials was studied in a dual fluidized bed gasification pilot plant (DFB). Several types of plastics, which are available in large amounts in waste streams, were investigated: PE, PP, and mixtures of PE + PS, PE + PET and PE + PP. It was found that the product gas from PE was rich in CH4 and C2H4 and had a LCV of 25 MJ/N m 3. About 22% of PE was converted to the monomer C2H4. Different mixtures of PE with other polymers showed, that the concentrations of CH4 and C2H4increased with an increasing proportion of PE and that they were the main decomposition products of PE. The product gas from pure PP contained more CH4 and less C2H4compared to the product gas from PE. The polymer mixtures behaved differently from the pure substances. Significantly more H2 and CO were generated from PE + PP and PE + PS. It can be assumed that the decomposition products of the two polymers in the mixture interacted strongly and alternately influenced the gasification process. More water was converted, so the gas production increased. The reforming reactions were enhanced and yielded H2 and CO at the expense of CH4 and C2H4. The mixture of PE + PET differed from the other polymers because of the high oxygen content of PET. Thus, 28% of CO2 were measured in the product gas. By contrast, CO2 was in the range of 8%, when oxygen-free polymers were gasified and CO2 was only produced from reactions with steam. Gasification of polymers resulted in significantly high tar loads in the product gas in the range of 100 g/N m 3. The GCMS analysis of tars showed that tars from polymers mainly consisted of PAH and aro-matics. Naphthalene was the most important tar compound. © 2013 Elsevier Ltd. All rights reserved.
Contributions to trade journals | 2013
Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier
Wilk V, Hofbauer H. Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier. Fuel. 2013;107:787-99.
Steam gasification of plastic materials was studied in a dual fluidized bed gasification pilot plant (DFB). Several types of plastics, which are available in large amounts in waste streams, were investigated: PE, PP, and mixtures of PE + PS, PE + PET and PE + PP. It was found that the product gas from PE was rich in CH4 and C2H4 and had a LCV of 25 MJ/N m 3. About 22% of PE was converted to the monomer C2H4. Different mixtures of PE with other polymers showed, that the concentrations of CH4 and C2H4 increased with an increasing proportion of PE and that they were the main decomposition products of PE. The product gas from pure PP contained more CH4 and less C2H4 compared to the product gas from PE. The polymer mixtures behaved differently from the pure substances. Significantly more H2 and CO were generated from PE + PP and PE + PS. It can be assumed that the decomposition products of the two polymers in the mixture interacted strongly and alternately influenced the gasification process. More water was converted, so the gas production increased. The reforming reactions were enhanced and yielded H2 and CO at the expense of CH4 and C2H4. The mixture of PE + PET differed from the other polymers because of the high oxygen content of PET. Thus, 28% of CO were measured in the product gas. By contrast, CO2 was in the range of 8%, when oxygen-free polymers were gasified and CO2 was only produced from reactions with steam. Gasification of polymers resulted in significantly high tar loads in the product gas in the range of 100 g/N m 3. The GCMS analysis of tars showed that tars from polymers mainly consisted of PAH and aro-matics. Naphthalene was the most important tar compound. © 2013 Elsevier Ltd. All rights reserved.
Contributions to trade journals | 2013
Conversion of fuel nitrogen in a dual fluidized bed steam gasifier
Wilk V, Hofbauer H. Conversion of fuel nitrogen in a dual fluidized bed steam gasifier. Fuel. 2013;106:793-801.
Conference contributions | 2014
Conversion and leaching characteristics of ashes during outdoor storage
Supancic K, Obernberger I, Kienzl N, Arich A. Aschenutzung Workshop „Conversion and leaching characteristics of ashes during outdoor storage” (held during the Central European Biomass Conference 2014), 15th-18th of January, Graz, Austria, 2014.
Peer Reviewed Scientific Journals | 2020
Control of biomass grate boilers using internal model control
Schörghuber C, Gölles M, Reichhartinger M, Horn M. Control of Biomass Grate Boilers using Internal Model Control. Control engineering practice. 2020.
A new model-based control strategy for biomass grate boilers is presented in this paper. Internal model control is used to control four outputs of the plant and to achieve a control structure with fewer control parameters needing to be experimentally tuned. A nonlinear state–space model describing the essential behaviour of the biomass grate boiler is used for controller design. The inverse system dynamics representing the main part of internal model control are designed with the help of this model. In doing so the properties of differentially flat systems are used. Due to a time delayed input, the inverse system is determined only for three input output channels. The stabilization of the inverse system dynamics, however, is a challenging task. A stabilization method with the help of the time delayed input is suggested and a stability analysis is given. The new control strategy has only three parameters to be tuned, representing a major reduction of complexity in comparison to existing model-based approaches. Finally, experimental results of the implemented control strategy on representative biomass grate boiler with a nominal capacity of 180 kW are presented and compared to an existing model-based control strategy based on input output linearization. The experimental evaluation proves that it is possible to operate the biomass boiler in all load ranges with high efficiency and low pollutant emissions.
Conference contributions | 2015
Control of a Biomass-Furnace Based on Input-Output-Linearization
Schörghuber C, Reichhartinger M, Horn M, Gölles M, Seeber R. Control of a Biomass-Furnace Based on Input-Output-Linearization, European Control Conference 2015, 15th-17th of July 2015, Linz, Austria. p 3513-3518.
Peer Reviewed Scientific Journals | 2020
Consequential Life Cycle Assessment of energy generation from waste wood and forest residues: The effect of resource-efficient additives
Corona B, Shen L, Sommersacher P, Junginger M. Consequential Life Cycle Assessment of energy generation from waste wood and forest residues: The effect of resource-efficient additives. Journal of Cleaner Production 2020. 259:120948.
Combustion of waste wood can cause slagging, fouling and corrosion which lead to boiler failure, affecting the energy efficiency and the lifetime of the power plant. Additivation with mineral and sulfur containing additives during waste wood combustion could potentially reduce these problems. This study aims at understanding the environmental impacts of using additives to improve the operational performance of waste wood combustion. The environmental profiles of four energy plants (producing heat and/or power), located in different European countries (Poland, Austria, Sweden and Germany), were investigated through a consequential life cycle assessment (LCA). The four energy plants are all fueled by waste wood and/or residues. This analysis explored the influences of applying different additives strategies in the four power plants, different wood fuel mixes and resulting direct emissions, to the total life cycle environmental impacts of heat and power generated. The impacts on climate change, acidification, particulate matter, freshwater eutrophication, human toxicity and cumulative energy demand were calculated, considering 1 GJ of exergy as functional unit. Primary data for the operation without additives were collected from the power plant operators, and emission data for the additives scenarios were collected from onsite measurements. A sensitivity analysis was conducted on the expected increase of energy efficiency. The analysis indicated that the use of gypsum waste, halloysite and coal fly ash decreases the environmental impacts of heat and electricity produced (average of 12% decrease in all impacts studied, and a maximum decrease of 121%). The decrease of impacts is mainly a consequence of the increase of energy generation that avoids the use of more polluting marginal technologies. However, impacts on acidification may increase (up to 120% increase) under the absence of appropriate flue gas cleaning systems. Halloysite was the additive presenting the highest benefits.
Other publication | 2017
Comparison of selected firelighters for stoves from renewable and fossil fuels in terms of gaseous emissons
Matschegg D, Kirchhof JM, Golicza L, Schwabl M, Schmidl C. Comparison of selected firelighters for stoves from renewable and fossil fuels in terms of gaseous emissons. 5th Central European Biomass Conference (Poster). January 2017, Graz, Austria.
Conference contributions | 2009
Comparative Characterisation of High Temperature Aerosols in Waste Wood Fired Fixed-Bed and Fluidised-Bed Combustion Systems
Obernberger I, Fluch J, Brunner T. Comparative Characterisation of High Temperature Aerosols in Waste Wood Fired Fixed-Bed and Fluidised-Bed Combustion Systems, 17th European Biomass Conference 2009, 29th of June-3rd of July 2009, Hamburg, Germany. p 1189-1199.
Peer Reviewed Scientific Journals | 2015
Combustion related characterisation of Miscanthus peat blends applying novel fuel characterisation tools
Sommersacher P, Brunner T, Obernberger I, Kienzl N, Kanzian W. Combustion related characterisation of Miscanthus peat blends applying novel fuel characterisation tools. Fuel 2015;158:253-262.
Peer Reviewed Scientific Journals | 2021
Combustion of poultry litter and mixture of poultry litter with woodchips in a fixed bed lab-scale batch reactor
Katsaros G, Sommersacher P, Retschitzegger S, Kienzl N, Tassou SA, Pandey DS. Combustion of poultry litter and mixture of poultry litter with woodchips in a fixed bed lab-scale batch reactor. Fuel. 2021.286.119310.
Experiments have been conducted in a batch fixed bed lab-scale reactor to investigate the combustion behaviour of three different biomass fuels, poultry litter (PL), blend of PL with wood chips (PL/WC) and softwood pellets (SP). Analysis of the data gathered after completion of the test runs, provided useful insights about the thermal decomposition behaviour of the fuels, the formation of N gaseous species, the release of ash forming elements and the estimation of aerosol emissions. It was observed that the N gaseous species are mainly produced during the devolatilisation phase. Hydrogen cyanide (HCN) was the predominant compound in the case of SP combustion, whereas ammonia (NH3) displayed the highest concentration during the combustion of PL and blend (PL/WC). With reference to ash forming elements, the release rates of potassium (K) and sodium (Na) range between 15–50% and 20–37% respectively, whereas the release rate of sulphur (S) falls between 54–92%. Chlorine (Cl) presents very high release rate for all tested fuels acquiring values greater than 85%, showing the volatile nature of the specific compound. The maximum potential of aerosol emissions was estimated based on the calculation of ash forming elements. In particular, during PL combustion the maximum aerosol emissions were observed, 2806 mg/Nm3 (dry flue gas, 13 vol% O2), mainly influenced by the release rate of K in the gas phase. Fuel indexes for the pre-evaluation of combustion related challenges such as NOx emissions, potential for aerosols formation, corrosion risk, and ash melting behaviour have also been investigated.
Conference contributions | 2008
Combustion and Gasification of solid biomass for heat and power production in Europe – State-of-the-Art and relevant future developments (keynote lecture)
Obernberger I, Thek G. Combustion and Gasification of solid biomass for heat and power production in Europe – State-of-the-Art and relevant future developments (keynote lecture), Conference on Industrial Furnaces and Boilers 2008, 25th-28th of March 2008, Vilamoura, Portugal.
Peer-reviewed publications | 2020
Combined influence of inorganics and transport limitations on the pyrolytic behaviour of woody biomass
Almuina-Villar H, Sommersacher P, Retschitzegger S, Anca-Couce A, Dieguez-Alonso A. Combined influence of inorganics and transport limitations on the pyrolytic behaviour of woody biomass. Chemical Engineering Transactions. 2020.80:73-78
A deeper understanding and quantification on the influence of inorganic species on the pyrolysis process, combined with the presence of heterogeneous secondary reactions, is pursued in this study. Both chemical controlled and transport limited regimes are considered. The former is achieved in a thermogravimetric analyser (TGA) with fine milled biomass in the mg range, while the latter is investigated in a particle level reactor with spherical particles of different sizes. To account for the influence of inorganics, wood particles were washed and doped with KCl aqueous solutions, resulting in K concentrations in the final wood of around 0.5% and 5% on dry basis. Gas species and condensable volatiles were measured online with Fourier transform infrared (FTIR) spectroscopy and a non-dispersive infrared (NDIR) gas analyzer. The removal of inorganic species delayed the pyrolysis reaction to higher temperatures and lowered char yields. The addition of inorganics (K) shifted the devolatilization process to lower temperatures, increased char and water yields, and reduced CO production among others. Higher heating rates and temperatures resulted in lower char, water, and light condensable yields, but significantly higher CH4 and other light hydrocarbons, as well as CO. The increase in these yields can be attributed, at least in part, to the gas phase cracking reactions of the produced volatiles. Larger particle size increased the formation of char, CH4 and other light hydrocarbons, and light condensables for low and high pyrolysis temperatures, while reduced the release of CO2 and H2O. This novel data set allows to quantify the influence of each parameter and can be used as basis for the development of detailed pyrolysis models which can include both the influence of inorganics and transport limitations when coupled into particle models.
Conference Papers | 2016
Cold flow modelling of char concentration in the recirculated bed material stream of a dual fluidized bed steam gasification system
Kraft S, Kirnbauer F, Hofbauer H. Cold flow modelling of char concentration in the recirculated bed material stream of a dual fluidized bed steam gasification system. Fluidization XV. 22-27 May 2016, Quebec, Canada.
The dual fluidized bed (DFB) steam gasification technology of biomass was developed at Vienna University of Technology and is well-established for transforming biomass into a product gas which can be used for further applications. The DFB steam gasification reactor consists of a gasification chamber (bubbling bed, fluidized with steam) and a combustion chamber (turbulent bed, fluidized with air). Biomass is fed into the gasification chamber and gets in contact with the bed material, typically Olivine, at about 840°C. The released volatiles leave the gasification reactor as product gas. A part of the solid residue, called char, flows with the bed material via a chute to the combustion chamber where it is burnt with air. The bed material is heated up, separated from the flue gas stream in a cyclone and flows back to the gasification reactor via a loop seal where it provides the heat for devolatilization and drying of the biomass. The movement of the char is crucial since a sufficient amount has to flow to the combustion chamber and burn to provide enough energy for bed material heat-up. Up to now little is known about the char concentration in the bed material recirculation stream (or short recirculation stream) and its influencing variables. Therefore, a cold flow model, operated with ambient air, was constructed to study the influence of various parameters on the char concentration in the recirculation stream. Bronze is used as bed material since is matches closest to the scaling criteria. The char is also scaled; polyethylene is used as model char.
The cold flow model, see Figure 1 for the flowsheet, consists of a “gasification chamber” which corresponds to the gasification chamber in the hot plant and is as well operated as a bubbling bed. Via a chute the recirculation stream moves to a rotary valve which enables to set a fixed recirculation rate and make it independent from the following pneumatic conveying. Then, gas and solids are separated in a cyclone and the recirculation stream finally flows back to the gasification chamber. After the loop seal samples are taken for investigation of the model char concentration in the recirculation stream. In the present study the influence of fluidization rate in the gasification chamber, bed material recirculation rate and model char mass in the system on the char concentration in the recirculation stream are investigated. It was found that the model char particles show a flotsam behavior. Higher fluidization rates increase the model char concentration in the recirculation stream because of better mixing, whereas the bed material recirculation rate has only little influence. Doubling and tripling the overall char mass in the system did not lead to a doubling or tripling model char concentration in the recirculation stream. The present observations are helping to better understand the ongoing phenomena inside of the dual fluidized bed gasification reactor and provide knowledge to further optimize it.
Conference contributions | 2012
CO2-Grenzvermeidungskosten alternativer Brennstoffe in der Zementindustrie
Ragoßnig AM, Plank R, Ehrenberg C. CO2-Grenzvermeidungskosten alternativer Brennstoffe in der Zementindustrie, DepoTech 2012, 6th-9th of October 2012, Leoben, Austria. p 283-288.
Der vorliegende Beitrag analysiert die Auswirkungen unterschiedlicher Brennstoffversorgungsszenarios im Calcinator des Zementherstellungsprozesses auf die emittierten CO2-Emissionen. In weiterer Folge werden die Grenzvermeidungskosten für CO2 im Vergleich zum Referenzszenario (100 % PetCoke) berechnet und dargestellt. Als alternative Brennstoffe werden auf Basis von Betriebserfahrungen sowie großtechnischer Versuche die alternativen Brennstoffe hochkalorischer Fluff (Standardszenario) sowie Schilf (Szenario A) und biogen angereicherter Ersatzbrennstoff (Szenario B) und vergleichend dazu in einer Literaturbasierten Analyse getrockneter Klärschlamm (Szenario C) betrachtet. Um die Auswirkung sich ändernder Marktbedingungen auf die Grenzvermeidungskosten abzubilden erfolgt eine Sensitivitätsanalyse hinsichtlich der Brennstoffgestehungskosten für die alternativen Brennstoffe sowie drei unterschiedliche Preisniveaus für Emissionsrechte und Brennstoffgestehungskosten des Referenzbrennstoffes PetCoke.
Studien | 2018
CO2-Einsparungskosten
Analyse der Sektoren Mobilität und Wärmebereitstellung
Strasser C, Sturmlechner R, Schwarz M. CO2-Einsparungskosten.2018
Dieser Bericht bietet eine ERhebung dero CO2e-Einsparungskosten außerhalb des ETS-Handels für den Bereich der Mobilität sowie der Wärmebereitstellung im häuslichen Sektor und Fern- und Nahwärme.
Peer Reviewed Scientific Journals | 2017
CO/CO2 Ratio in biomass char oxidation
Anca-Couce A, Sommersacher P, Shiehnejadhesar A, Mehrabian R, Hochenauer C, Scharler R. CO/CO2 Ratio in biomass char oxidation. INFUB 2017, 11th European Conference on Industrial Furnace and Boilers. 18-21 April 2017, Albufeira, Portugal.
The CO/CO2 release ratio obtained during char combustion of single biomass particles has been analysed in this work experimentally and by modelling. Experiments have been conducted with spruce, straw and Miscanthus pellets at different temperatures. Furthermore, these experiments have been modelled with a single particle model coupled with a CFD model of the single particle reactor. The results show that the CO/CO2 ratio strongly depends on the feedstock, being lower for spruce than for straw or Miscanthus. Furthermore, the most commonly employed correlations for this ratio in literature are not adequate, as they either under- or over-predict it.
Conference contributions | 2019
Co-Simulation of an Energy Management System for Future City District Energy Systems (Presentation)
Moser AGC, Muschick D, Gölles M, Lerch W, Schranzhofer H, Nageler PJ et al. Co-Simulation of an Energy Management System for Future City District Energy Systems. International Conference on Innovative Applied Energy. 2019. (Oral presentation, 15.03.2019.)
Slides of the talk "Co-Simulation of an Energy Management System for Future City District Energy Systems"
BEST
Bioenergy and
Sustainable Technologies