Publications
Reviewed Conference Papers | 2019
Co-Simulation of an Energy Management System for Future City District Energy Systems
Moser AGC, Muschick D, Gölles M, Lerch W, Schranzhofer H, Nageler PJ et al. Co-Simulation of an Energy Management System for Future City District Energy Systems. In Proceedings of the International Conference on Innovative Applied Energy. 2019.
The continuous increase of (volatile) renewable energy production and the development of energy-efficient buildings have led to a transformation of city districts’ energy systems. Their complexity has increased significantly due to the coupling of the different energy sectors like heating, cooling and electricity. Such complex multi-energy systems can be operated more efficiently and reliably if knowledge of their specific components (in terms of mathematical models) as well as knowledge of weather forecasts is incorporated in a high-level controller, which is typically referred to as an Energy Management System (EMS). However, still little comprehensive information on the costs and the practical advantages of such systems is available. For this reason, a simulation environment to estimate the real costs and advantages of the use of such an EMS is required. Consequently, this work focuses on the development of an EMS for future city districts’ energy systems and the development of a co-simulation environment in order to demonstrate the benefits of the use of the developed EMS in comparison to a conventional control strategy. The co-simulation is implemented with the aid of the co-simulation platform Building Controls Virtual Test Bed (BCVTB) and consists of the following parts: a non-linear, thermoelectric model and a control block containing either the conventional control strategy or the EMS. The thermoelectric model is built up using the well-established simulation tools TRNSYS and IDA-ICE, simulating the energy hub of the city district and the districts’ buildings, respectively. The control block is simulated using MATLAB, where IBM ILOG CPLEX is used for solving the resulting mixed-integer linear program (MILP) of the EMS. Finally, an economic model for financial (and ecological) assessment of the operation is simulated with the aid of the software package Dymola. To put the developed EMS and the co-simulation into practise a case study based on a new city district in Graz, Austria, which is currently in the planning stage, is carried out. The integration of the responsible planners and investors in the modelling process guarantees the models’ practical applicability. In the case study the performance of the originally planned conventional control strategy is compared with the performance of the developed EMS using annual simulations with a simulation time step of 1 minute, and a 24 hour prediction horizon and a 15 minute time step for the EMS. For a more robust and realistic comparison both control strategies are simulated for different scenarios considering current and future (2060) climate conditions, medium and high energy demands (load), ideal and real load prediction methods and varying import prices for electricity from the electricity grid. The results show that the use of the developed EMS strategy results in reduced annual total costs (considering operational and investment costs of additionally suggested distributed energy resources) in comparison to the conventional control strategy. Furthermore, the annual CO2-emissions could be reduced by increasing the self-consumption of the installed (renewable) energy resources and thus decreasing the necessary energy imports from the electricity and the heating grid.
Contributions to trade journals | 2013
Co-gasification of plastics and biomass in a dual fluidized-bed steam gasifier: Possible interactions of fuels
Wilk V, Hofbauer H. Co-gasification of plastics and biomass in a dual fluidized-bed steam gasifier: Possible interactions of fuels. Energy and Fuels. 2013;27(6):3261-73.
Co-gasification of biomass and plastics was investigated in a 100 kW dual fluidized-bed pilot plant using four types of plastic material of different origins and soft wood pellets. The proportion of plastics was varied within a broad range to assess the interaction of the materials. The product gas composition was considerably influenced by co-gasification, whereas the changes were nonlinear. More CO and CO2 were measured in the product gas from co-gasification than would be expected from linear interpolation of mono-gasification of the materials. Less CH4 and C2H 4 were formed, and the tar content in the product gas was considerably lower than presumed. With the generation of more product gas than expected, co-gasification of wood and plastic materials also had other beneficial effects. Because of the fuel mixtures, more radicals of different types were available that interacted with each other and with the fluidization steam, enhancing the reforming reactions. Wood char had a positive effect on polymer decomposition, steam reforming, and tar reduction. As a result of the more active splash zone during co-gasification of wood and plastics, contact between gas and bed material was enhanced, which is crucial for catalytic tar removal. © 2013 American Chemical Society.
Contributions to trade journals | 2013
Co-firing of imported wood pellets - an option to efficiently save CO2 emissions in Europe?
Ehrig R, Behrendt F. Co-firing of imported wood pellets - An option to efficiently save CO2 emissions in Europe? Energy Policy. 2013;59:283-300.
In this paper the energy and carbon footprints of pellet imports from Australia, West Canada, and Russia for co-firing in Europe are investigated. Their ecologic and economic performances are proven by applying the Belgian and UK co-firing subsidy systems, which require dedicated sustainability evaluations. Based on the modelling of different subsidy schemes and price scenarios, the present paper identifies favourable conditions for the use of biomass co-firing in Germany and Austria, which currently do not have dedicated co-firing incentives. The present paper shows that under present conditions, co-firing has a narrow financial gap to coal with -3 to 4€ Cent/kWhel and has low CO2 mitigation costs compared to other renewables. Moreover, it is shown that co-firing is one of the most cost-attractive options to reach the EU-2020 targets. For policy makers, the support of co-firing is found to be very efficient in terms of cost-benefit ratio. It is proven that the co-firing subsidy schemes might direct supply chain decisions towards options with low energy and carbon impacts. © 2013 Elsevier Ltd.
Conference contributions | 2012
CO off‐gassing from pellets: Impact of raw material choice and storage conditions – Implications for pellets standardization
Emhofer W. CO off‐gassing from pellets: Impact of raw material choice and storage conditions – Implications for pellets standardization, World Bioenergy 2012, 29th-31st of May 2012 Jönköping, Sweden.
Conference contributions | 2012
CO aus Holzpellets. Bildung, Charakterisierung und Maßnahmen
Emhofer W, Aigenbauer S. CO aus Holzpellets. Bildung, Charakterisierung und Maßnahmen, 12. Holzenergiesymposium 2012, 14th of September 2012, Zürich, Schweiz. p 147-158 (peer reviewed)
Peer Reviewed Scientific Journals | 2015
Closing the Nutrient Cycle in Two-Stage Anaerobic Digestion of Industrial Waste Streams
Rachbauer L, Gabauer W, Scheidl S, Ortner M, Fuchs W, Bochmann G. Closing the Nutrient Cycle in Two-Stage Anaerobic Digestion of Industrial Waste Streams. Energy Fuels 2015;29(7):4052-4057.
Industrial waste streams from brewing industries and distilleries provide a valuable but largely unused alternative substrate for biogas production by anaerobic digestion. High sulfur loads in the feed caused by acidic pretreatment to enhance bioavailability are responsible for H2S formation during anaerobic digestion. Microbiological oxidation of H2S provides an elegant technique to remove this toxic gas compound. Moreover, it allows for recovery of sulfuric acid, the final product of aerobic sulfide oxidation, as demonstrated in this study. Two-stage anaerobic digestion of brewer’s spent grains, the major byproduct in the brewing industry, allows for the release of up to 78% of total H2S formed in the first pre-acidification stage. Desulfurization of such pre-acidification gas in continuous acidic biofiltration with immobilized sulfur-oxidizing bacteria resulted in a maximum H2S elimination capacity of 473 g m–3 h–1 at an empty bed retention time of 91 s. Complete H2S removal was achieved at inlet concentrations of up to 6363 ppm. The process was shown to be very robust, and even after an interruption of H2S feeding for 10 days, excellent removal efficiency was immediately restored. A maximum sulfate production rate of 0.14 g L–1 h–1 was achieved, and a peak concentration of 4.18 g/L sulfuric acid was reached. Further experiments addressed the reduction of fresh water and chemicals to minimize process expenses. It was proven that up to 50% of mineral medium that is required in large amounts during microbiological desulfurization can be replaced by the liquid fraction of the digestate. The conducted study demonstrates the viability of microbial sulfur recovery with theoretical recovery rates of up to 44%.
Conference contributions | 2009
Climate Impact of a Private Company`s Choice, Poster
Ragossnig A, Wartha C, Pomberger R. Climate Impact of a Private Company`s Choice, Poster, Waste & Climate 2009, 7th-18th of September, Copenhagen, Denmark.
Conference contributions | 2009
Cleaning and Usage of Product Gas from Biomass Steam Gasification
Rauch R. Cleaning and Usage of Product Gas from Biomass Steam Gasification, Gasification 2009 –gas clean up and treatment, 22th-23th of October 2009, Clarion Hotel Sign, Stockholm, Sweden.
Other publication | 2017
CleanAir by Biomass - Status Quo Analysis of the Model Region
Klauser F, Sturmlechner R, Schwabl M, Reichert G, Schmidl C, Weissinger A, Haslinger W, Stressler H. CleanAir by Biomass - Status Quo Analysis of the Model Region. 25th European Biomass Conference & Exhibition (oral presentation). June 2017, Stockholm, Sweden.
Conference contributions | 2020
CleanAir by biomass
Sturmlechner R, Stressler H, Golicza L, Reichert G, Schwabl M, Höftberger E, Kelz J. CleanAir by biomass. 6th Central European Biomass Conference, 2020, Graz.
Other publication | 2017
Clean Air by Biomass - Demonstration of clean and efficient combustion of biomass
Klauser F, Schwabl M, Reichert G, Schmidl C, Weissinger A. Clean Air by Biomass - Demonstration of clean and efficient combustion of biomass. 5th Central European Biomass Conference (Poster). January 2017, Graz, Austria.
Peer-reviewed publications | 2012
CHP-Plant Güssing, Austria
Rauch R. CHP-Plant Güssing, Austria. Handbook biomass gasification - Second Edition. ISBN 9789081938501 2012:32-36.
Peer Reviewed Scientific Journals | 2017
Characterization of polyhydroxyalkanoates produced by Synechocystis salina from digestate supernatant
Kovalcik A, Meixner K, Mihalic M, Zeilinger W, Fritz I, Fuchs W, Kucharczyk P, Stelzer F, Drosg B. Characterization of polyhydroxyalkanoates produced by Synechocystis salina from digestate supernatant. International Journal of Biological Macromolecules. 1 September 2017;102: 497-504.
Conference contributions | 2013
Characterization of modern biomass heating and domestic hot water supply systems
Haslinger W, Schmidl C, Schwarz M, Schwabl M, Golicza L, Carlon E, Wopienka E, Verma V. Characterization of modern biomass heating and domestic hot water supply systems, 21st European Biomass Conference and Exhibition 2013, 3rd-7th of June 2013, Copenhagen, Denmark.
Peer Reviewed Scientific Journals | 2016
Characterization of biochars produced from pyrolysis of pelletized agricultural residues
Colantoni A, Evic N, Lord R, Retschitzegger S, Proto A, Gallucci F, Monarca D. Characterization of biochars produced from pyrolysis of pelletized agricultural residues. Renewable and Sustainable Energy Reviews. 1 October 2016;64: 187-194.
Biochars produced from pelletized grape vine (GV) and sunflower husk (SFH) agricultural residues were studied by pyrolysis in a batch reactor at 400 and 500 °C. Chemical and physical evolution of the biomass under pyrolysis conditions was determined and the products were characterized, including the main gaseous organic components. Results showed a decrease in solid biochar yield with increasing temperature. Biochar is defined as a “porous carbonaceous solid” produced by thermochemical conversion of organic materials in an oxygen depleted atmosphere, which has physiochemical properties suitable for the safe and long-term storage of carbon in the environment and, potentially, soil improvement. The aim of this work is to improve the knowledge and acceptability of alternative use of the biochar gained from agro-forestry biomass residuals, such as grape vine and sunflower husks, by means of modern chemical and physical characterization tools.
Scientific Journals | 2019
Characterization and performance evaluation of ammonia as fuel for solid oxide fuel cells with Ni/YSZ anodes
Stoeckl B, Subotić V, Preininger M, Schwaiger M, Evic N, Schroettner H, Hochenauer C. Characterization and performance evaluation of ammonia as fuel for solid oxide fuel cells with Ni/YSZ anodes. Electrochimica Acta 2019;298:874-883.
Peer Reviewed Scientific Journals | 2017
Characteristics of adapted hydrogenotrophic community during biomethanation
Rachbauer L, Beyer R, Bochmann G, Fuchs W. Characteristics of adapted hydrogenotrophic community during biomethanation. Science of The Total Environment. 1 October 2017;595: 912-919.
Peer Reviewed Scientific Journals | 2017
Characteristics and synergistic effects of co-combustion of carbonaceous wastes with coal
Onenc S, Retschitzegger S, Evic N, Kienzl N. Characteristics and synergistic effects of co-combustion of carbonaceous waste with coal. ATHENS 2017 5th International Conference on Sustainable Solid Waste Management (Poster). June 2017, Athens, Greece.
This study presents combustion behavior and emission results obtained for different fuels: poultry litter (PL) and its char (PLC), scrap tires (ST) and its char (STC) and blends of char/lignite (PLC/LIG and STC/LIG). The combustion parameters and emissions were investigated via a non-isothermal thermogravimetric method and experiments in a lab-scale reactor. Fuel indexes were used for the prediction of high temperature corrosion risks and slagging potentials of the fuels used. The addition of chars to lignite caused a lowering of the combustion reactivity (anti-synergistic effect). There was a linear correlation between the NOx emissions and the N content of the fuel. The form of S and the concentrations of alkali metals in the fuel had a strong effect on the extent of SO2 emissions. The use of PL and PLC in blends reduced SO2 emissions and sulphur compounds in the fly ash. The 2S/Cl ratio in the fuel showed that only PLC and STC/PLC would show a risk of corrosion during combustion. The ratio of basic to acidic oxides in fuel indicated that ST, STC and STC/LIG have low slagging potential. The molar (Si + P + K)/(Ca + Mg) ratio, which was used for PL, PLC and PLC containing blends, showed that the ash melting temperatures of these fuels would be higher than 1000 °C.
Conference contributions | 2013
Characterisation of Jatropha mahafalensis oil
Sonnleitner A. Characterisation of Jatropha mahafalensis oil, Word Sustainable Energy Days next 2013, 27th-28th of February 2013, Wels, Austria.
Contributions to trade journals | 2012
Characterisation of Jatropha curcas seeds and oil from Mali
Rathbauer J, Sonnleitner A, Pirot R, Zeller R, Bacovsky D. Characterisation of Jatropha curcas seeds and oil from Mali. Biomass Bioenergy. 2012;47:201-10.
This publication deals with the characterisation of Jatropha curcas seeds and the oil obtained hereof. The analyzed seeds have been harvested from hedges and plantations in the regions of Teriya Bugu and Bla in Mali in the years 2009 and 2010. The oil is obtained through solvent extraction. Parameters analyzed are those which are relevant for processing of the oil into fatty acid methyl ester (FAME, biodiesel), and include acid value, fatty acid profile and contents of S, P, K, Na, Ca and Mg. All oil samples are suitable for processing into biodiesel, but some of them require pre-treatment because of high contents of free fatty acids and phosphorous. The margin of deviation of acid value and element contents throughout the oil samples depends on the way of cultivation, harvest and storage of the Jatropha curcas plants and seeds. Despite high acid values, all oil samples show high oxidation stability. © 2012 Elsevier Ltd.
Conference Papers | 2015
Challenges toward model-based control for hybrid biomass-based heating systems
Unterberger V, Gölles M. Challenges toward model-based control for hybrid biomass-based heating systems. e-nova 2015. November 2015, Pinkafeld, Austria. Unterberger V, Gölles M. Challenges toward model-based control for hybrid biomass-based heating systems. Nachhaltige Gebäude, Graz. Leykam. 2015;10:393-404.
Biomass boilers used for residential heating and hot water supply are typically combined with a buffer storage and solar collectors. However, the annual utilization rates typically achieved with such systems are far below those theoretically possible, which is mainly because of the often poor quality of both the individual control of the components as well as the high-level control of the entire system. The control strategies typically applied consist of simple decou-pled control circuits with linear controllers, which cannot deal with the mostly nonlinear and coupled behaviour of the components and thus do not ensure their reasonable interaction. The most appropriate approach to address these challenges is the application of model-based control techniques. Within the paper an overview of mathematical models suitable for control purposes, a simple to implement load forecasting method as well as control strate-gies for both the individual components and the entire system are presented. Future chal-lenges for a practical implementation of this novel approach are discussed in the outlook sec-tion.
Peer Reviewed Scientific Journals | 2008
Challenges in small-scale combustion of agricultural biomass fuels
Carvalho L, Lundgren J, Wopienka E. Challenges in small-scale combustion of agricultural biomass fuels. International Journal of Energy for a Clean Environment. 2008;9(1-3):127-42.
Straw, Miscanthus, maize, and horse manure were reviewed in terms of fuel characteristics. They were tested in existing boilers, and the particulate and gaseous emissions were monitored. The ash was analyzed for the presence of sintered material. All the fuels showed problems with ash lumping and slag formation. Different boiler technologies showed different operational performances. Maize and horse manure are problematic fuels regarding NOx and particulate emissions. Miscanthus was the best fuel tested. Due to the big variation of fuel properties and therefore combustion behavior of agricultural biomass, further R&D is required to adapt the existing boilers for these fuels.
Conference contributions | 2010
Challenges and requirements for the technical development of pellet heating systems.
Haslinger W, Schmidl C. Challenges and requirements for the technical development of pellet heating systems, 10. Industrieforum Pellets 2010, 7th-8th of September 2010, Stuttgart, Germany.
Conference contributions | 2020
Challenges and recent results in microalgae research
Meixner K. Challenges and recent results in microalgae research. 6th Central european biomass conference, 2020, Graz.
Conference contributions | 2011
CFD-Simulationen als innovatives Werkzeug für die Entwicklung und Optimierung von Biomasse-Kleinfeuerungsanlagen und Kaminöfen
Scharler R, Benesch C, Obernberger I. CFD-Simulationen als innovatives Werkzeug für die Entwicklung und Optimierung von Biomasse-Kleinfeuerungsanlagen und Kaminöfen, Central Europe Biomass Conference 2011, 26th-29th of January 2011, Graz, Austria.
BEST
Bioenergy and
Sustainable Technologies