Publications
Peer Reviewed Scientific Journals | 2020
Prediction of slag related problems during fixed bed combustion of biomass by application of a multivariate statistical approach on fuel properties and burner technology
Rebbling A, Näzelius IL, Schwabl M, Feldmeier S, Schön C, Dahl J, Haslinger W, Boström D, Öhman M, Boman C. Prediction of slag related problems during fixed bed combustion of biomass by application of a multivariate statistical approach on fuel properties and burner technology. Biomass and Bioenergy 2020.137:105557.
Slag is related to the melting properties of ash and is affected by both the chemical composition of the fuel ash and the combustion parameters. Chemical analysis of slag from fixed bed combustion of phosphorus-poor biomass show that the main constituents are Si, Ca, K, O (and some Mg, Al, and Na), which indicates that the slag consists of different silicates. Earlier research also points out viscosity and fraction of the ash that melts, as crucial parameters for slag formation. To the authors’ knowledge, very few of the papers published to this day discuss slagging problems of different pelletized fuels combusted in multiple combustion appliances. Furthermore, no comprehensive classification of both burner technology and fuel ash parameters has been presented in the literature so far. The objective of the present paper was therefore to give a first description of a qualitative model where ash content, concentrations of main ash forming elements in the fuel and type of combustion appliance are related to slagging behaviour and potential operational problems of a biomass fuel in different small- and medium scale fixed bed appliances.
Based on the results from the combustion of a wide range of pelletized biomass fuels in nine different burners, a model is presented for amount of slag formed and expected severity of operational problems. The model was validated by data collected from extensive combustion experiments and it can be concluded that the model predicts qualitative results.
Conference contributions | 2014
Price cointegration in the Austrian wood fuel market,
Kristöfel C, Morawetz UB, Schmid E, Strasser C. Price cointegration in the Austrian wood fuel market, 22nd European Biomass Conference 2014, 23rd-26th of June 2014, Hamburg, Germany. p 1330-1335.
The wood fuel market is connected to the forestbased industry in various ways: the sawmill by products such as sawdust and wood chips are usually used as raw material in the panel, pulp and paper industry and are increasingly pelletized to supply the energy commodity market. Hence, the question arises whether or not prices of these woody biomass commodities are integrated. Threshold cointegration and asymmetric error correction models are used to analyze the price dynamics between roundwood, wood pellets and sawmill by products. Results indicate that a statistical significant price transmission between sawmill byproducts and wood pellets, but wood pellet and roundwood prices are not integrated. The price transmission between wood pellets and sawdust as well as wood chips is asymmetric. The Granger Causality test reveals that the prices of sawdust and wood chips depend on the price of wood pellets.
Conference contributions | 2009
Primary measures for low-emission residential wood combustion – comparison of old with optimised modern systems
Brunner T, Obernberger I, Scharler R. Primary measures for low-emission residential wood combustion – comparison of old with optimised modern systems, 17th European Biomass Conference 2009, 29th of June-3rd of July 2009, Hamburg, Germany.
Conference contributions | 2020
Primary- and Secondary Measures for Manually Fired Stoves - An Overview
Reichert G. Primary- and Secondary Measures for Manually Fired Stoves - An Overview. 6th Central European Biomass Conference, 2020, Graz.
Other Presentations | 2019
Primäre und sekundäre Verbesserungen an einem Biomassekessel für Agrarbrennstoffe
Zemann C, Kelz J, Muschick D, Retschitzegger S, Gölles M. Primäre und sekundäre Verbesserungen an einem Biomassekessel für Agrarbrennstoffe. 10. Fachgespräch: Partikelabscheider in häuslichen Feuerungen. 20. März 2019 (2019). [online]. (Tagungsreader, 15). Leipzig: DBFZ. 168 S.
ie Biomasseverbrennung spielt eine zentrale Rolle bei der Bereitstellung von Wärme aus erneuerbaren Energieträgern. Konventionelle Biomasse-Brennstoffe werden jedoch aufgrund einer steigenden Anzahl stofflicher Verwertungsmöglichkeiten, wie z.B. der Umwandlung in Chemikalien, teurer und schwieriger zugänglich. Agrarbrennstoffe, die bisher nur selten oder gar nicht in Biomasse-Kleinfeuerungen eingesetzt wurden, stellen eine vielversprechende Alternative zu konventionellen Brennstoffen dar. Diese Agrarbrennstoffe, wie zum Beispiel Kurzumtrieb, Maisspindeln oder Stroh sind kostengünstig und in ausreichender Menge vorhanden. Der Einsatz von Agrarbrennstoffen in konventionellen Biomasse-Kleinfeuerungen ist jedoch aufgrund stark variierender Brennstoffeigenschaften mit erhöhten Anforderungen an das Verbrennungssystem verbunden. Erhöhte N, S, Cl, Alkalimetall- und Aschegehalte sowie niedrigere Aschenschmelzpunkte können zu aschebedingten Problemen (Ascheschmelze, Ascheablagerung und Korrosion) sowie erhöhten Konzentrationen von gasförmigen (CO, NOx, HCl und SOx) und partikelförmigen Emissionen bei der Verbrennung führen.
Ziel der in diesem Beitrag präsentierten Arbeiten war die Erhöhung die Brennstoffflexibilität einer handelsüblichen Biomasse-Kleinfeuerung um damit eine Verbrennung von Agrarbrennstoffen mit niedrigen Schadstoffemissionen und einem hohen Wirkungsgrad zu ermöglichen. Hierzu wurde eine modellbasierte Regelung entwickelt, welche insbesondere eine gezielte Einstellung des Luftverhältnisses in der Primärverbrennungszone ermöglicht und damit das Risiko der Ascheschmelze reduziert und Schadstoffmissionen verringert. Soft-Sensoren bestimmen relevante Brennstoffeigenschaften während des Betriebs, welche von der modellbasierten Regelung zur automatischen Anpassung an geänderte Brennstoffeigenschaften genutzt werden. Die modellbasierte Regelung wurde um eine CO-lambda-Optimierung ergänzt, welche auf Basis von Messwerten des Restsauerstoffgehalts und der CO-Emissionen den Wirkungsgrad der Verbrennung maximiert und gleichzeitig die Schadstoffemissionen verringert. Zur weiteren Verringerung von partikelförmigen Schadstoffemissionen wurde ein am Markt verfügbarer Elektrofilter adaptiert und nach dem Wärmeübertrager der Biomasse-Kleinfeuerung angebracht.
Dieses Verbrennungssystem wurde durch umfassende Testläufe mit begleitenden Emissionsmessungen sowie Brennstoff-, Staub- und Ascheanalysen bewertet. Der Einsatz der modellbasierten Regelung führte zu einem stabileren Betrieb bei allen Leistungen und für alle Brennstoffe. Der Elektrofilter zeigte sehr zufriedenstellende Abscheidegrade für alle untersuchten Brennstoffe und Anlagenleistungen. Dadurch konnte die Brennstoffflexibilität der handelsüblichen Biomasse-Kleinfeuerung erhöht und die Verbrennung von Agrarbrennstoffen ermöglicht werden.
Conference contributions | 2012
Processing Options Of Heavy Fractions From MBT Plant
Meirhofer M, Ragoßnig AM, Sommer M. Processing Options Of Heavy Fractions From MBT Plant, ISWA Annual Congress Florence 2012, 18th of September 2012, Florence, Italy.
Conference contributions | 2012
Processing Options Of Heavy Fractions From MBT Plants
Meirhofer M, Ragoßnig AM, Sommer M. Processing Options Of Heavy Fractions From MBT Plants, ISWA Annual Congress Florence 2012, 17th-19th of September 2012, Florence, Italy. (peer reviewed)
Heavy fractions resulting from mechanical treatment stages of Mechanical Biological Treatment (MBT) plants are posing very specific demands with regard to further treatment/disposal as they contain a high portion of inert material as well as a high portion of high calorific components. Based on the current Austrian legal situation (landfill ordinance: max. Higher Calorific Value (HCV) for MBT-fractions to be landfilled = 6,600 kJ/kg DM) this waste stream cannot be landfilled but must be thermally treated. In economic terms it is desirable to separate high calorific from inert waste components in order to allow for a material specific routing taking advantage of the difference in the costs for the downstream treatment / disposal.
In this conference contribution results of extensive processing experiments with the heavy fraction from the mechanical stage of the MBT plant of Umweltdienst Burgenland in Oberpullendorf, Austria, are presented. Experiments have been conducted with three different sensor-based automatic sorting systems (NIR – Multiplexer, NIR – Spectral Imaging, X-Ray transmission) as well as two density based processing technologies (wet treatment with a jigger, dry treatment with a cross flow air separation device). In addition a rotary shredder, which allows selective crushing, followed by screening has been investigated.
The performance of the processing options have been evaluated by characterizing the resulting product streams by means of manual sorting in order to evaluate purity and yield achieved by the respective treatment options. In addition to that chemical and physical parameters relevant for further treatment / disposal steps for the resulting product streams have been analysed. The inert fraction has been evaluated regarding the landfilling on a mass waste landfill on one hand and on a C&D waste landfill on the other hand. The high calorific product stream has been evaluated with regard to its thermal utilization.
Complementing the technical evaluation of the processing options an economical assessment of the processing options looked at including the economical implications of the resulting changes in the routing of the waste streams has been conducted.
Conference contributions | 2020
Product flexibility from biomass steam gasification applying gas upgrading and synthesis processes
Binder M, Product flexibility from biomass steam gasification applying gas upgrading and synthesis processes. 6th Central European Biomass Conference, 22-24 January 2020, Graz.
Technical Reports | 2016
Production of advanced biofuels
Bacovsky D. Production of advanced biofuels. Nationaler Workshop Biotreibstoffe. September 2016.
Conference contributions | 2017
Production of Fuel Ethanol and Higher Alcohols from Biomass Residue
Summers M, Liao C, Hoffman M, Hart M, Seiser R, Neimann U, Cattolica R, Rauch R, Binder M. Production of Fuel Ethanol and Higher Alcohols from Biomass Residue. 25th European Biomass Conference & Exhibition (oral presentation). June 2017, Stockholm, Sweden.
Conference contributions | 2015
Production of high purity hydrogen from biomass-derived synthesis gas using dual fluidised bed gasification technology
Loipersböck J., Rehling B., Rauch R., Hofbauer H. Production of high purity hydrogen from biomass-derived synthesis gas using dual fluidised bed gasification technology, 23rd European Biomass Conference 2015, 1st-4th of June 2015, Vienna, Austria. (oral presentation)
Conference contributions | 2013
Production of mixed alcohols from biomass-derived synthesis gas using a sulfidized molybdenum catalyst
Weber G, Rauch R, Hofbauer H. Production of mixed alcohols from biomass-derived synthesis gas using a sulfidized molybdenum catalyst, International Conference on Polygeneration Strategies 2013, 3th-5th of September 2013, Vienna, Austria. Weber G, Rauch R, Hofbauer H. Production of mixed alcohols from biomass-derived synthesis gas using a sulfidized molybdenum catalyst, International Conference on Polygeneration Strategies 2013, 3th-5th of September 2013, Vienna, Austria. (peer reviewed)
Conference contributions | 2010
Production of Synthetic Biofuels in existing Industry - Simulation of FICFB and Fischer - Tropsch - Process in IPSEpro
Weber G, Potetz A, Rauch R, Hofbauer H. Production of Synthetic Biofuels in existing Industry - Simulation of FICFB and Fischer - Tropsch - Process in IPSEpro, ICPS 2010, 7th-9th of September 2010, Leipzig, Germany.
In cooperation between Vienna University of Technology and Bioenergy 2020+ a project was done which had the objective to evaluate the prospects for the production of Biofuels by integration in existing Austrian biomass industry. The advantages of such integration are the good access to renewable energy resources like wood chips, existing infrastructure for electricity and heat, existing logistics of resources and the utilization of waste heat from Biofuel production to substitute fossil fuels. One work package included the process simulation of thermo-chemical biomass gasification and the production of a second generation Biofuel by the use of Fischer – Tropsch (FT) - synthesis. The process simulation tool IPSEpro was used for the simulation. The simulation of technical processes allows the prediction of the behavior of processes on the base of mathematical models. The quality of a simulation model depends substantially on the used model and the process parameters. The used technologies in the process simulation were the biomass gasification with the Fast Internal Circulating Fluidized Bed (FICFB) – gasification system and the Fischer –Tropsch (FT) - synthesis. The FICFB was developed by the Vienna University of technology. This gasification technology is used in the well known demonstration plant is Güssing (Austria). The produced product gas is nearly nitrogen free and has a high content of hydrogen (45 – 35 Vol%dry) and carbon monoxide (25 – 20 Vol%dry). These product gas components are used in the FT - synthesis for the production of FT – raw product. A FT - Trial Plant is also situated in Güssing since the year 2005. A slurry reactor is used in the Trial Plant for the FT – synthesis. The target for the simulation was the production of FT – raw product as well as the substitution of fossil fuels. The waste heat of the process should be used for the production of steam. An amount of 120 tons per hour of fossil produced steam should be substituted. The
Off-Gas of the FT – process was also used for the production of steam. Two different models for location number one were considered. The used fuel was wood chips. The data out of the simulation were used to calculate the economic efficiency of the plants. An important parameter was the price of the FT – raw product per liter. The total costs and the production capacity were set equal to calculate the marginal revenue. Also a sensitivity analysis was done to evaluate the effects of rising fuel costs and increased investment costs.
Conference contributions | 2012
Produktentwicklung von Biomassekesseln – Rollenprüfstandstest für Biomassekessel kleiner Leistung
Haslinger W. Produktentwicklung von Biomassekesseln – Rollenprüfstandstest für Biomassekessel kleiner Leistung, Innovationsforum Ökoenergie-Cluster 2012, 18th of October 2012, Linz, Austria.
Conference Papers | 2016
Progress in hydrogen production from product gas generated by dual fluidized bed biomass steam gasification
Kraussler M, Hofbauer H. Progress in hydrogen production from product gas generated by dual fluidized bed biomass steam gasification. 24th European Biomass Conference & Exhibition (oral presentation). June 2016, Amsterdam, Netherlands.
Other Publications | 2016
Progress in Mixed Alcohol Synthesis - Based on Wood Gas Derived from Dual Fluidized Bed Biomass Steam Gasification
Binder, M., Weber, G., Rauch, R., Hofbauer, H.: Progress in Mixed Alcohol Synthesis - Based on Wood Gas Derived from Dual Fluidized Bed Biomass Steam Gasification. Poster presentation at CASCATBEL workshop 2016, 18 - 20 May 2016, Porto Carras, Greece.
Peer Reviewed Scientific Journals | 2020
Progressive Hedging for Stochastic Energy Management Systems: The Mixed-Integer Linear Case
Kaisermayer V, Muschick D, Gölles M, Horn M. Progressive Hedging for Stochastic Energy Management Systems: The Mixed-Integer Linear Case. Energy Systems. 2020 Aug 29. https://doi.org/10.1007/s12667-020-00401-z
Energy systems have increased in complexity in the past years due to the everincreasing integration of intermittent renewable energy sources such as solar thermal or wind power. Modern energy systems comprise different energy domains such as electrical power, heating and cooling which renders their control even more challenging. Employing supervisory controllers, so-called energy management systems (EMSs), can help to handle this complexity and to ensure the energy-efficient and cost-efficient operation of the energy system. One promising approach are optimization-based EMS, which can for example be modelled as stochastic mixed-integer linear programmes (SMILP). Depending on the problem size and control horizon, obtaining solutions for these in real-time is a difficult task. The progressive hedging (PH) algorithm is a practical way for splitting a large problem into smaller subproblems and solving them iteratively, thus possibly reducing the solving time considerably. The idea of the PH algorithm is to aggregate the solutions of subproblems, where artificial costs have been added. These added costs enforce that the aggregated solutions become non-anticipative and
are updated in every iteration of the algorithm. The algorithm is relatively simple to implement in practice, re-using almost all of a possibly existing deterministic implementations and can be easily parallelized.
Although it has no convergence guarantees in the mixed-integer linear case, it can nevertheless be used as a good heuristic for SMILPs. Recent theoretical results shown that for applying augmented Lagrangian functions in the context of mixed-integer programmes, any norm proofs to be a valid penalty function. This is not true for squared norms, like the squared L 2 -norm that is used in the classical progressive hedging algorithm. Building on these theoretical results, the use of the L 1 and L-infinity-norm in the PH algorithm is investigated in this paper. In order to incorporate these into the algorithm an adapted multiplier update step is proposed. Additionally a heuristic extension of the aggregation step and an adaptive penalty parameter update scheme from the literature is investigated. The advantages of the proposed modifications are demonstrated by means of illustrative examples, with the application to SMILP-based EMS in mind.
Conference contributions | 2014
Promotion of bioenergy initiatives in Centru Region, Romania
Kristöfel C, Ehrig R, Strasser C. Promotion of bioenergy initiatives in Centru Region Romania, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.
Conference contributions | 2014
Promotion of successful bioenergy initiatives in Eastern Europe
Kristöfel C. Promotion of successful bioenergy initiatives in Eastern Europe, Word Sustainable Energy Days 2014, 26th-28th of February 2014, Wels, Austria. (visual presentation)
Contributions to trade journals | 2013
Pseudo heterogeneous modeling of catalytic methane steam reforming process in a fixed bed reactor
Sadooghi P, Rauch R. Pseudo heterogeneous modeling of catalytic methane steam reforming process in a fixed bed reactor. Journal of Natural Gas Science and Engineering. 2013;11:46-51.
A mathematical model is developed to simulate synthesis gas production by methane steam reforming process in a fixed bed reactor filled with catalyst particles. Due to the endothermic nature of the reforming reactions heat is supplied into the reactor by means of electrical heating, therefore, the reactor and catalyst particles are exposed to significant axial and radial temperature gradients. A pseudo heterogeneous model is used in order to exactly represent diffusion phenomena inside the reactor tube. Heat and mass transfer equations are coupled with detailed reaction mechanisms and solved for both the flow phase and within the catalyst pellets. The reaction has been investigated from a modeling view point considering the effect of different temperatures ranging from 873 to 1073 (K) on methane conversion and hydrogen yields. The result provides temperature and concentration distribution along the reactor axial and radial coordinates and strong radial temperature gradients particularly close to the entrance of the reactor have been found. © 2013 Elsevier B.V.
Contributions to trade journals | 2013
Pulmonary inflammation and tissue damage in the mouse lung after exposure to PM samples from biomass heating appliances of old and modern technologies
Happo MS, Uski O, Jalava PI, Kelz J, Brunner T, Hakulinen P, et al. Pulmonary inflammation and tissue damage in the mouse lung after exposure to PM samples from biomass heating appliances of old and modern technologies. Sci Total Environ. 2013;443:256-66.
Current levels of ambient air fine particulate matter (PM2.5) are associated with mortality and morbidity in urban populations worldwide. In residential areas wood combustion is one of the main sources of PM2.5 emissions, especially during wintertime. However, the adverse health effects of particulate emissions from the modern heating appliances and fuels are poorly known. In this study, health related toxicological properties of PM1 emissions from five modern and two old technology appliances were examined. The PM1 samples were collected by using a Dekati® Gravimetric Impactor (DGI). The collected samples were weighed and extracted with methanol for chemical and toxicological analyses. Healthy C57BL/6J mice were intratracheally exposed to a single dose of 1, 3, 10 or 15mg/kg of the particulate samples for 4, 18 or 24h. Thereafter, the lungs were lavaged and bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation, cytotoxicity and genotoxicity. Lungs of 24h exposed mice were collected for inspection of pulmonary tissue damage. There were substantial differences in the combustion qualities of old and modern technology appliances. Modern technology appliances had the lowest PM1 (mg/MJ) emissions, but they induced the highest inflammatory, cytotoxic and genotoxic activities. In contrast, old technology appliances had clearly the highest PM1 (mg/MJ) emissions, but their effect in the mouse lungs were the lowest. Increased inflammatory activity was associated with ash related components of the emissions, whereas high PAH concentrations were correlating with the smallest detected responses, possibly due to their immunosuppressive effect. © 2012 Elsevier B.V.
Other Presentations | 2013
Pylogenetic (SSU) and Fatty Acid Analysis of Several Algal Strains within the Trebouxiophyceae and Implications for Commercial Purposes
Gruber M, Darienko T, Pröschold T, Jirsa F, Schagerl M. Pylogenetic (SSU) and Fatty Acid Analysis of Several Algal Strains within the Trebouxiophyceae and Implications for Commercial Purposes, 21st European Biomass Conference and Exhibition 2013, 3rd-7th of June 2013, Copenhagen, Denmark.
Peer Reviewed Scientific Journals | 2017
Pyrolysis of pellets made with biomass and glycerol: Kinetic analysis and evolved gas analysis
Bartocci P, Anca-Couce A, Slopiecka K, Nefkens S, Evic N, Retschitzegger S, Barbanera M, Buratti C, Cotana F, Bidini G, Fantozzi F. Pyrolysis of pellets made with biomass and glycerol: Kinetic analysis and evolved gas analysis. Biomass and Bioenergy. February 2017;97: 11-19.
Glycerol is a co-product compound of biodiesel production with an interesting heating value. In this work pyrolysis kinetic parameters for a pellet made with a mass fraction of 90% sawdust and a mass fraction of 10% glycerol are derived through thermogravimetric analysis. A new parallel reaction scheme with four components (cellulose, hemicellulose, lignin and glycerol) is adopted and the kinetic triplet for each component is derived using a model fitting approach applied to this particular kind of pellet. The isoconversional method Kissinger-Akahira-Sunose is employed both to provide initial values for model fitting simulations and to check final results. Results show that activation energies and pre-exponential factors are respectively: 149.7 kJ mol−1 and 1.98*1011 s−1 for hemicellulose, 230.1 kJ mol−1 and 1.84*1017 s−1 for cellulose, 154.3 kJ mol−1 and 5.14*109 s−1 for lignin, 74.5 kJ mol−1 and 2.17*105 s−1 for glycerol with a first reaction order for all components, except for lignin (n = 2.6). Through evolved gas analysis it was demonstrated that the thermal degradation of glycerol contained in the pellet can increase hydrogen content in pyrolysis gases.
Conference Papers | 2017
Pyrolysis of sewage sludge to produce fuels and chemical feedstock
Wartha C, Kranner R, Meirhofer M. Pyrolysis of sewage sludge to produce fuels and chemical feedstock. 5th Central European Biomass Conference (Poster). January 2017, Graz, Austria.
Conference contributions | 2009
Quality Check for European Wood Pellets
Wopienka E, Griesmayr S, Friedl G, Haslinger W. Quality Check for European Wood Pellets, 17th European Biomass Conference 2009, 29th of June-3rd of July 2009, Hamburg, Germany. p 1821-1823.
In the presented work the fuel quality and basic data about production processes of wood pellets from
all over Europe are investigated. For this purpose pellets producers were interviewed and fuel samples were analysed. Information from 91 companies was evaluated, covering about 50% of the European pellets production capacity, and pellets samples of 51 companies from 18 different countries were examined. It was found, that the raw material for pellets production is mainly taken from local resources. 75% of the plants process soft wood, whereas the use of hard wood is more common in Eastern Europe, Italy, Spain and France. Regarding the fuel properties of the pellets, differences were mainly found with regard to ash content and mechanical durability. In spite of these strong variations, almost all samples fulfilled the requirements according to the respective quality standard declared, and a clear correlation of valid standards and available pellets qualities was observed.
BEST
Bioenergy and
Sustainable Technologies