Publications
Peer Reviewed Scientific Journals | 2016
Simultaneous Online Determination of S, Cl, K, Na, Zn, and Pb Release from a Single Particle during Biomass Combustion. Part 2: Results from Test Runs with Spruce and Straw Pellets
Sommersacher P, Kienzl N, Brunner T, Obernberger I. Simultaneous Online Determination of S, Cl, K, Na, Zn, and Pb Release from a Single Particle during Biomass Combustion. Part 2: Results from Test Runs with Spruce and Straw Pellets. Energy and Fuels. 21 April 2016;30(4): 3428-3440.
To gain better insight into inorganic element release processes, test runs with a specially designed single particle reactor connected with an inductively coupled plasma mass spectrometer (ICP-MS) have been performed. Relevant combustion related parameters such as mass loss during thermal degradation, temperature development of the particle (surface and center), and composition of released gases were recorded. By coupling the reactor to an ICP-MS, time-resolved release profiles of relevant aerosol forming elements (S, Cl, K, Na, Zn, and Pb) were determined. Targeted and controlled interruptions of the experiments (quenching) after a certain time were performed to validate reactor performance and reliability of the measurements. Test runs with softwood and straw pellets (8 mm in diameter and about 20 mm in length) were performed at reactor temperatures of 700, 850, and 1000 °C under oxidizing conditions (5.6 or 4.2 vol % O2). These test runs have revealed that the release ratios of volatile and semivolatile ash forming elements (S, Cl, K, Na, Zn, and Pb) generally increase as reactor temperatures rise. Moreover, regarding straw, higher Si and Al contents influence the release behavior of K, Na, Zn, and Pb. For K, existing release mechanisms proposed in the literature have been confirmed, and for Na it has been suggested that release mechanisms similar to K prevail. Especially during the starting phase of the experiment, a distinct temperature gradient exists from the surface to the center of the particle. Thus, different conversion phases occur in parallel in different layers of the particle, which has to be considered during the interpretation of the time-resolved release profiles of the main inorganic elements. Furthermore, transport limitations due to the occurrence of molten phases (especially for straw at reactor temperatures of 1000 °C) were obvious and could be directly derived from the online recorded release profiles. The targeted interruption of the ongoing decomposition process (quenching) provided an indication of the validity of the release profiles for S, K, Na, Zn, and Pb. Additionally, these experiments delivered valuable information regarding possible release mechanisms.
Peer Reviewed Scientific Journals | 2015
Simultaneous online determination of S, Cl, K, Na, Zn and Pb release from a single particle during biomass combustion Part 1: Experimental setup implementation and evaluation
Sommersacher P, Kienzl N, Brunner T, Obernberger I. Simultaneous online determination of S, Cl, K, Na, Zn and Pb release from a single particle during biomass combustion Part 1: Experimental setup implementation and evaluation. Energy and Fuels. 15 October 2015;29:6734-6746.
The interest in experimental data regarding thermal fuel decomposition as well as the release behavior of ash-forming elements of biomass fuels for modeling and simulation purposes is continuously increasing. On the basis of combustion experiments with lab-scale reactors and single-particle reactors, integral release data regarding ash-forming vapors can be obtained, whereby the release is calculated on the basis of analysis data of the fuel and the ash residues. At the moment, almost no time-resolved release data of ash-forming elements from single particles exist. Therefore, a single-particle reactor was designed, which has been coupled to an inductively coupled plasma mass spectrometer (ICP-MS). This reactor can be used for targeted experiments in a temperature range of 250–1050 °C under inert, reducing, and oxidizing conditions. With this reactor, it is possible to simultaneously determine the surface and center temperatures of a biomass particle, weight loss of the particle, and flue gas composition. The reactor has been coupled to an ICP-MS through a gas stream that is sufficiently diluted with Ar. First performance tests with pure salts (KCl, NaCl, (NH4)2SO4, ZnCl2, and PbCl2) proved that relevant volatile ash-forming elements can be detected with the ICP-MS. For a further validation of the received signals, combustion tests with Miscanthus pellets have been carried out, whereby the controlled interruption of the experiments has also been investigated. These tests prove that with this system the simultaneous time-resolved determination of S, Cl, K, Na, Zn, and Pb is possible whereby the Cl signal can only be used with restrictions. On the basis of the determined release of ash-forming elements for the entire combustion experiment, a quantification/calibration of the measured intensities has been carried out. The data gained from these tests will provide deeper insights into release processes as well as form a relevant basis for release model development.
Conference contributions | 2014
Sicherheit bei der Lagerung von Pellets
Emhofer W. Sicherheit bei der Lagerung von Pellets, Highlights der Energieforschung VIII - Erneuerbares Heizen und Kühlen 2014, 11th of July 2014, Vienna, Austria
Peer Reviewed Scientific Journals | 2016
Short term online corrosion measurements in biomass fired boilers. Part 2: Investigation of the corrosion behavior of three selected superheater steels for two biomass fuels
Retschitzegger, S., Gruber, T., Brunner, T., Obernberger, I. Short term online corrosion measurements in biomass fired boilers. Part 2: Investigation of the corrosion behavior of three selected superheater steels for two biomass fuels. Fuel Processing Technology. Volume 142, February 2016, Pages 59-70.
The high temperature corrosion behavior of the boiler steels 13CrMo4-5 (1.7335), P91 (1.4903) and 1.4541 has been investigated during short-term test runs (~ 500 h) at a biomass fired grate furnace combined with a drop tube. For the test runs performed with 13CrMo4-5 and P91 chemically untreated wood chips have been used as fuel, whereas waste wood has been used for test runs with P91 and 1.4541. Online corrosion probes and a mass loss probe have been used applying a methodology developed in a previous study to correct for a measurement error occurring during short-term measurements with online corrosion probes (mass loss correction). Furthermore, deposit probe measurements have been performed to evaluate the deposit build-up rate and the chemical composition of deposits. SEM/EDX analyses of the corrosion probes have been performed subsequently to the test runs to gain information regarding the chemical composition and structure of the deposits as well as the corrosion layers.
The furnace has been operated at constant load to ensure constant combustion conditions. The flue gas temperature at the probes has been varied between 740 and 900 °C and the probe surface temperature has been varied between 400 and 560 °C in order to determine their influence on the corrosion rate.
General trends determined by the variation of these temperatures were similar for all boiler steels: the corrosion rate increased with increasing flue gas temperature and also with increasing probe surface temperature. For chemically untreated wood chips combustion at low flue gas temperatures (740 °C) the corrosion rates were comparable for 13CrMo4-5 and P91 at all probe surface temperatures. However, at flue gas temperatures of 800 °C and higher P91 showed better corrosion resistance than 13CrMo4-5. For waste wood combustion 1.4541 generally showed a better corrosion resistance than P91.
The mass loss correction of the measurement error occurring in the initial phase resulted in different errors of 55% for 13CrMo4-5 and 32% for P91 for chemically untreated wood chips. For waste wood the mass loss correction resulted in errors of 55% for P91 and 77% for 1.4541. The results from the mass loss determination for the waste wood test runs scattered stronger compared to the wood chips test runs. Therefore, the fits were not that accurate and the error margin was higher. However, the results outline that the mass loss correction is relevant in order to achieve a meaningful comparison of different short-term test runs using online corrosion probes.
Peer Reviewed Scientific Journals | 2015
Short term online corrosion measurements in biomass fired boilers. Part 1: Application of newly developed mass loss probe
Retschitzegger S, Gruber T, Brunner T, Obernberger I. Short term online corrosion measurements in biomass fired boilers. Part 1: Application of a newly developed mass loss probe. Fuel Process Technol 2015;137:148-156.
Contributions to trade journals | 2008
Sewage Sludge Ash to phosphorus fertiliser: variables influencing heavy metal removal during thermochemical treatment
Mattenberger H, Fraissler G, Brunner T, Herk P, Hermann L, Obernberger I. Sewage sludge ash to phosphorus fertiliser: Variables influencing heavy metal removal during thermochemical treatment. Waste Manage. 2008;28(12):2709-22.
Contributions to trade journals | 2010
Sewage Sludge Ash to phosphorus fertiliser (II): variables influencing heavy metal removal during thermochemical treatment
Mattenberger H, Fraissler G, Jöller M, Brunner T, Obernberger I, Herk P, et al. Sewage sludge ash to phosphorus fertiliser (II): Influences of ash and granulate type on heavy metal removal. Waste Manage. 2010;30(8-9):1622-33.
Conference contributions | 2011
Sensorbasierte Sortierung zur Erzeugung einer Deponiefraktion aus einer MBA-Schwerfraktion - Praxiserfahrungen und Vergleich verschiedener Aufbereitungsalternativen
Meirhofer M, Ragossnig A, Pieber S, Sommer M. Sensorbasierte Sortierung zur Erzeugung einer Deponiefraktion aus einer MBA-Schwerfraktion - Praxiserfahrungen und Vergleich verschiedener Aufbereitungsalternativen, Waste-to-Resources 2011, 24th-27th of May 2011, Hannover, Germany.
The processing of heterogeneous waste is a major challenge for waste treatment equipment used in mechanical-biological (MB) waste treatment plants. This conference contribution focuses on the technical feasibility and efficiency of different technologies for the processing of a heavy waste fraction from a MB-plant which contains a high portion of high caloric components. The aim is to meet the requirements for waste to be landfilled in Austria. Also economic considerations with regard to the implementation of an additional separation step and the resulting changes in the waste routing are discussed. The processing technologies looked at comprise sensor-based sorting technologies (NIR, X-ray transmission) as well as traditional mechanical density separation technologies such as a jigger and cross-flow air classification.
Peer Reviewed Scientific Journals | 2014
Seeing about soil — management lessons from a simple model for renewable resources
Lichtenegger K, Schappacher W. Seeing about soil — management lessons from a simple model for renewable resources. International Journal of Modern Physics C. 2014;25(8).
Employing an effective cellular automata model, we investigate and analyze the build-up and erosion of soil. Depending on the strategy employed for handling agricultural production, in many cases we find a critical dependence on the prescribed production target, with a sharp transition between stable production and complete breakdown of the system.
Strategies which are particularly well-suited for mimicking real-world management approaches can produce almost cyclic behavior, which can also either lead to sustainable production or to breakdown.
While designed to describe the dynamics of soil evolution, this model is quite general and may also be useful as a model for other renewable resources and may even be employed in other disciplines like psychology.
Other Presentations | 2014
Scenedesmus obliquus as Source for Biogas: Anaerobic Digestion of Untreated and Pre-treated Biomass.
Gruber M, Zohar E, Jerney J, Bochmann G, Obbard JP, Schagerl M, Fuchs W, Drosg B. Scenedesmus obliquus as Source for Biogas: Anaerobic Digestion of Untreated and Pre-treated Biomass, 15. Tagung der Sektion Phykologie der DGB 2014, 23rd-26th of February 2014, Stralsund, Germany.
Peer Reviewed Scientific Journals | 2020
Scale-up methodology for automatic biomass furnaces
Barroso G, Nussbaumer T, Ulrich M, Reiterer T, Feldmeier S. Scale-up methodology for automatic biomass furnaces. Journal of the Energy Institute 2020.93:591-604.
This work presents a methodology to perform the scale-up of a solid fuel furnace to a higher heat output with maintaining or improving the burn-out quality. As basis to derive the scale-up concept, an example of a 35 kW screw burner for biomass fuels is investigated. Based on the Pi-theorem, the relevant dimensionless parameters are derived and similarity rules for the scale-up are proposed as follows: As initial conditions, the height to diameter ratio of the combustion chamber, the mean Reynolds number in the combustion chamber and the mean square velocity through the combustion chamber shall be kept constant or in the case of the Reynolds number may also increase. Additionally the effective momentum flux ratio between the secondary air injected in the combustion chamber and the gases from the pyrolysis and gasification section also shall be kept constant to maintain the mixing conditions between combustible gases and secondary air. Finally the thermal surface load on the screw also shall be kept constant. The influence of different scale-up approaches on thermal surface load, gas velocity, pressure losses, Reynolds number and height-to-diameter ratio are compared and discussed and a scaling approach to increase the heat output from 35 kW to 150 kW is described. For a theoretical validation of the scale-up, CFD simulations are performed to investigate the predicted pollutant emissions and the pressure loss for the scaled 150 kW furnace.
Contributions to trade journals | 2017
Rural electrification and capacity expansion with an integrated modeling approach
Hartvigsson E, Stadler M, Cardoso G. Rural electrification and capacity expansion with an integrated modeling approach. Renewable Energy by Elsevier. 2017.
Conference contributions | 2010
Rotary kiln pyrolysis- First results of a 3 MW pilot plant
Kern S, Halwachs M, Pröll T, Kampichler G. Rotary Kiln Pyrolysis First Results of a 3 MW Pilot Plant, IFC on IGCC and XtL 2010, 3rd-5th of May 2010, Dresden, Germany.
A pyrolysis process can be used to split up the biomass in a volatile fraction poor in undesired substances (Cl, N, S,
Na and K) and a char fraction where these substances are concentrated. In this way cheap biomass can be used for cofiring in existing fossil fuel power stations without the danger of corrosion, deposition, and emission problems. The aim of the project is the development and demonstration of a biomass pretreatment process based on pyrolysis in the temperature range between 450-650 °C to split the energy in the biomass into volatiles with a low content of the above mentioned undesired compounds and char, where most of these pollutants are concentrated. The balance of the system can provide important results, such as the development of the product spectrum by a function of the operating parameters. Based on the results of the pilot plant a scale up to a capacity of 30 MWth fuel input and the connection with the coal fired power plant is currently investigated.
Contributions to trade journals | 2012
Rotary kiln pyrolysis of straw and fermentation residues in a 3 MW pilot plant – Influence of pyrolysis temperature on pyrolysis product performance
Kern S, Halwachs M, Kampichler G, Pfeifer C, Pröll T, Hofbauer H. Rotary kiln pyrolysis of straw and fermentation residues in a 3 MW pilot plant - Influence of pyrolysis temperature on pyrolysis product performance. J Anal Appl Pyrolysis. 2012;97:1-10.
The idea of co-firing biomass in an already existing coal-fired power plant could play a major contribution in the reduction of carbon dioxide emissions. Huge amounts of unused biomass in terms of agricultural residues such as straw, which is a cheap and local feedstock, are often available. But due to the high amount of corrosive ash elements (K, Cl, etc.), the residues are usually not suitable for co-firing in a thermal power plant. Therefore, the feedstock is converted by low temperature pyrolysis into gaseous pyrolysis products and charcoal. A 3 MW pyrolysis pilot plant located next to a coal-fired power plant near Vienna was set up in 2008. For the process, an externally heated rotary kiln reactor with a design fuel power of 3 MW is used which can handle about 0.6-0.8 t/h straw. The aim is to investigate the fundamentals for scale-up to the desired size for co-firing in a coal-fired power plant. In addition to the desired fuel for the process, which is wheat straw, a testing series for DDGS was also performed. The high amount of pyrolysis oil in the gas had positive effects on the heating value of the pyrolysis gas. Chemical efficiencies of this pyrolysis pilot plant of up to 67% for pyrolysis temperatures between 450°C and 600°C can be reached. The focus of this work is set on the pyrolysis products and their behavior at different pyrolysis temperatures as well as the performance of the pyrolysis process. © 2012 Elsevier B.V.
Conference contributions | 2010
Rotary Kiln Pyrolysis First Results of a 3 MW Pilot Plant
Kern S, Halwachs M, Pröll T, Kampichler G. Rotary Kiln Pyrolysis First Results of a 3 MW Pilot Plant, 18th European Biomass Conference and Exhibiton 2010, 3th-7th May 2010, Lyon, France. p 950-955.
A pyrolysis process can be used to split up the biomass in a volatile fraction poor in undesired substances (Cl, N, S,
Na and K) and a char fraction where these substances are concentrated. In this way cheap biomass can be used for cofiring in existing fossil fuel power stations without the danger of corrosion, deposition, and emission problems. The aim of the project is the development and demonstration of a biomass pretreatment process based on pyrolysis in the temperature range between 450-650 °C to split the energy in the biomass into volatiles with a low content of the above mentioned undesired compounds and char, where most of these pollutants are concentrated. The balance of the system can provide important results, such as the development of the product spectrum by a function of the operating parameters. Based on the results of the pilot plant a scale up to a capacity of 30 MWth fuel input and the connection with the coal fired power plant is currently investigated.
Conference contributions | 2014
Rolle und Potenzial der Bioenergie für die Wärmeversorgung der Zukunft
Haslinger W. Rolle und Potenzial der Bioenergie für die Wärmeversorgung der Zukunft, Technologiegespräche Alpbach 2014, 13th-29th of August 2014, Alpbach, Austria.
Peer Reviewed Scientific Journals | 2020
Robust design of microgrids using a hybrid minimum investment optimization
Pecenak ZK, Stadler M, Mathiesen P, Fahy K, Kleissl J. Robust design of microgrids using a hybrid minimum investment optimization. Applied Energy. 2020;276:115400.
Recently, researchers have begun to study hybrid approaches to Microgrid techno-economic planning, where a reduced model optimizes the DER selection and sizing is combined with a full model that optimizes operation and dispatch. Though providing significant computation time savings, these hybrid models are susceptible to infeasibilities, when the size of the DER is insufficient to meet the energy balance in the full model during macrogrid outages. In this work, a novel hybrid optimization framework is introduced, specifically designed for resilience to macrogrid outages. The framework solves the same optimization problem twice, where the second solution using full data is informed by the first solution using representative data to size and select DER. This framework includes a novel constraint on the state of charge for storage devices, which allows the representation of multiple repeated days of grid outage, despite a single 24-h profile being optimized in the representative model. Multiple approaches to the hybrid optimization are compared in terms of their computation time, optimality, and robustness against infeasibilities. Through a case study on three real Microgrid designs, we show that allowing optimizing the DER sizing in both stages of the hybrid design, dubbed minimum investment optimization (MIO), provides the greatest degree of optimality, guarantees robustness, and provides significant time savings over the benchmark optimization.
Contributions to trade journals | 2009
Results and Experiences of Long Term Tests of the Fischer Tropsch Synthesis at the Biomass CHP Güssing
Rauch R. Results and Experiences of Long Term Tests of the Fischer Tropsch Synthesis at the Biomass CHP Güssing, Kraftstoffe der Zukunft 2009, 7. Internationaler Fachkongress für Biokraftstoffe des BBE und der UFOP 2009, 30th of November–1st of December 2009, Berlin, Deutschland.
Conference contributions | 2014
Residential Wood Combustion (RWC) -Investigation of user behavior and operating conditions regarding stoves and their impact on emissions and efficiency
Reichert G, Schmidl C, Haslinger W, Moser W, Aigenbauer S, Figl F, Wöhler M. Residential Wood Combustion (RWC) -Investigation of user behavior and operating conditions regarding stoves and their impact on emissions and efficiency, 4th Central European Biomass Conference 2014, 15th-18th of January 2014, Graz, Austria.
Conference contributions | 2020
Reliability of TGA data for characterization of alternative biomass feedstocks
Retschitzegger S, Kienzl N, Anca-Couce A, Tsekos C, Banks S, Kraia T, Zimbardi F, Funke A, Marques P. Reliability of TGA data for characterization of alternative biomass feedstocks. 6th Central European Biomass Conference, 2020, Graz.
Conference contributions | 2013
Release of gaseous compounds during torrefaction – results from test runs and modelling
Mehrabian R, Stangl S, Scharler R, Obernberger I, Janisch W, Trattner K. Release of gaseous compounds during torrefaction – results from test runs and modelling, 21st European Biomass Conference and Exhibition 2013, 3rd-7th of June 2013, Copenhagen, Denmark.
Most of the current pyrolysis/torrefaction mechanisms are not able to predict the composition of pyrolysis/torrefaction products. They usually lump the products as permanent gases, liquids (condensable species) and solid residuals. However, the composition of the emitted species is required to predict the calorific value of the torrgas and to model the possible subsequent gas phase reactions and the temperature distribution within the reactor. Therefore, in this work a mechanism from literature is applied for the first time to predict the composition of the torrgas as a combination of twenty typical species. Several experimental data sets from literature are used to evaluate the mechanism. Since the mechanism predicts several relevant species (>1% wt.) in the torrgas for which no experimental data in the literature are available, test runs at a lab-scale packed bed reactor have been performed to achieve more detailed data of torrgas composition for model validation. Among the species for which measured data are available, carbon monoxide and methanol are well predicted. The predictions of carbon dioxide, methane, formaldehyde, acetaldehyde and ethanol are qualitatively correct. The predictions of water vapour, acetic acid, propanal, ethylene and sugar components show deviations. However, yields of solid residual and total emitted gas and tar are well predicted by the mechanism.
Conference contributions | 2015
Regulation of land competition in Brazil
Ludwiczek N. Regulation of land competition in Brazil, 23rd European Biomass Conference 2015, 1st-4th of June 2015, Vienna, Austria. (oral presentation)
Conference contributions | 2012
Reflexions on the existing guideline (and EN) about the sampling and analysis of tar matter from product gas, pyrolysis gas and synthesis gas
Zeisler J, Kleinhappl M, Martini S, Neubauer Y. Reflexions on the existing guideline (and EN) about the sampling and analysis of tar matter from product gas, pyrolysis gas and synthesis gas, 20th European Biomass Conference 2012, 18th-22nd of June 2012, Milano, Italy. p 884-897.
In the last years sampling at various gasification plants has been performed at Bioenergy2020+. The equipment, which is based on the recommendations of the tar guideline, has been further developed and adjusted to specific needs. For an evaluation of the procedure different parts of the equipment were tested with a new developed gas-generating unit. Most effort has been performed at the absorption of BTXE-S and PAH in 2-propanol. Additionally new characterisation-methods for pyrolysis samples with SPE (Solid Phase Extraction) have been tested and a qualitative identification of main components could be achieved. Furthermore tests for stabilisation and storage of samples were done. The results of the investigations represent an ongoing optimisation-work with the aim of establishing an international working-group which will compile guidelines for sampling organic and inorganic components at gasification and pyrolysis plants with different new online and offline methods. The appendix delivers some useful data about the substances and dynamic precipitation in an investigated impinger step.
Peer Reviewed Scientific Journals | 2018
Reference Shaping for Model-Based Control of Biomass Grate Boilers.
Seeber R, Gölles M, Dourdoumas N, Horn M. Reference Shaping for Model-Based Control of Biomass Grate Boilers. Control Engineering Practice. 2019 Jan;82:173-184. https://doi.org/10.1016/j.conengprac.2018.10.006
An established control strategy for biomass grate boilers based on a low-order nonlinear model is considered. Under ideal conditions, it achieves decoupled control of desired outputs by means of input–output linearization. The decoupling is gradually reduced and control performance deteriorates when actuator saturation occurs. This may be avoided by appropriately shaping the control strategy’s reference values. This contribution presents a method to do so by solving a sequence of linear programs. Its implementation requires the knowledge of typically unknown limits of mass-flows fed into the plant. An estimation strategy for these limits based on measurable quantities is thus proposed. Experimental data from three different scenarios is presented, in which the reference shaping improves tracking, mitigates wind-up phenomena and reduces emissions, respectively.
Peer Reviewed Scientific Journals | 2014
Reducing the risk of foaming and decreasing viscosity by two-stage anaerobic digestion of sugar beet pressed pulp
Stoyanova E, Forsthuber B, Pohn S, Schwarz C, Fuchs W, Bochmann G. Reducing the risk of foaming and decreasing viscosity by two-stage anaerobic digestion of sugar beet pressed pulp. Biodegradation. 2014;25(2):277-89.
Anaerobic digestion (AD) of sugar beet pressed pulp (SBPP) is a promising treatment concept. It produces biogas as a renewable energy source making sugar production more energy efficient and it turns SBPP from a residue into a valuable resource. In this study one- and two-stage mono fermentation at mesophilic conditions in a continuous stirred tank reactor were compared. Also the optimal incubation temperature for the pre-acidification stage was studied. The fastest pre-acidification, with a hydraulic retention time (HRT) of 4 days, occurred at a temperature of 55 °C. In the methanogenic reactor of the two-stage system stable fermentation at loading rate of 7 kg VS/m3 d was demonstrated. No artificial pH adjustment was necessary to maintain optimum levels in both the pre-acidification and the methanogenic reactor. The total HRT of the two-stage AD was 36 days which is considerably lower compared to the one-stage AD (50 days). The frequently observed problem of foaming at high loading rates was less severe in the two-stage reactor. Moreover the viscosity of digestate in the methanogenic stage of the two-stage fermentation was in average tenfold lower than in the one-stage fermentation. This decreases the energy input for the reactor stirring about 80 %. The observed advantages make the two-stage process economically attractive, despite higher investments for a two reactor system. © 2013 Springer Science+Business Media Dordrecht.
BEST
Bioenergy and
Sustainable Technologies